
Introduction to Resampling Statistics
Using Statistics101

Solving Statistics Problems with Simulation

John Grosberg

www.statistics101.net

file:///C:/nbProjects/Statistics101_java_1.4/Tutorials/IntroToProgramming/Kindle%20Versions/www.statistics101.net

Revised: 10/30/2015

Copyright © 2007 - 2014, 2015 by John Grosberg

All rights reserved

Introduction to Resampling Statistics Using Statistics101

3

Table of Contents

INTRODUCTION TO RESAMPLING STATISTICS USING STATISTICS101.......................... 1

TABLE OF CONTENTS ... 3

PREFACE ... 6

INTRODUCTION.. 7

The Resampling Method .. 9

PART 1: SOLVING PROBABILITY AND STATISTICS PROBLEMS WITH STATISTICS101 11

Probability versus Statistics ... 11

Building a Probability or Statistics Model .. 11
Modeling Populations ... 11
Modeling Samples ... 15

Sampling with replacement ... 15
Sampling without replacement .. 15

Modeling Processes .. 17

Probability Examples ... 18
Independent Events .. 18
Dependent Events ... 19
Probability Distributions ... 21

Discrete Distributions ... 21
Discrete Uniform Distribution ... 21
Binomial Distribution... 22

Continuous Distributions ... 24
Continuous Uniform Distribution .. 24
Probability Density .. 25
A Simple Application of the Continuous Uniform Distribution ... 27
Introducing Subroutines .. 28
Normal Distribution ... 30

Sampling Distribution of a Statistic .. 32

Statistics Examples .. 34
The Sample versus the Population ... 35

Bias ... 37
The Bootstrap ... 37
Confidence Intervals ... 41
Hypothesis Testing .. 45
More Examples ... 51

PART 2: LANGUAGE BASICS ... 53

Introduction to Resampling Statistics Using Statistics101

4

Data Types ... 53
Numbers ... 53
Vectors (Lists) .. 53
Arrays .. 55
Names ... 55
Strings ... 56

Commands ... 56
Command Syntax Descriptions ... 59
Comments ... 60
Continuation Lines .. 61
The LET Command .. 61
The STRING Command .. 62

Programs ... 63

Logical Expressions .. 66
Simple Tests .. 67
Compound Tests ... 69

Compound Commands .. 71
REPEAT ... END .. 71
FOREACH ... END ... 73
IF ... ELSEIF ... ELSE ... END .. 74
WHILE ... END .. 76
UNTIL ... END ... 77
Nesting Commands ... 78
The BREAK Command ... 79

Program Clarity and Readability .. 80
Named Constants .. 80

Enums ... 81
Named Values .. 83
The NAME command ... 83
Named Constants and Sequences .. 83
Named Constants and Sorting Order ... 84
Named Constants and Comparison Tests .. 85

Subroutines: User-defined Commands .. 87
Subroutine Declaration ... 87
Subroutine Definition ... 87

Visibility of Names .. 88
Passing Data into and out of a Subroutine ... 89
Optional Arguments ... 90

Subroutine Invocation .. 91
Subroutine Annotations .. 92

Subroutine Description Annotation ... 93
Subroutine Category Annotation ... 93

Subroutine Libraries .. 94
The INCLUDE command ... 95
The Subroutine Browser .. 95

Subroutine Summary .. 96

Introduction to Resampling Statistics Using Statistics101

5

Error Messages .. 96
Syntax Errors ... 97
Run-time Errors ... 98

PART 3: SPECIAL TECHNIQUES .. 100
How to compare two vectors for equality .. 100
How to determine if all the elements of a vector are equal ... 102
How to detect a sequence .. 103
How to sort related vectors .. 105
How to shuffle related vectors ... 106
How to filter related vectors ... 108
How to iterate over related vectors ... 110
How to avoid the “Out of Memory” error .. 110

BIBLIOGRAPHY ... 112

APPENDIX 1: GLOSSARY ... 113

APPENDIX 2: COMPLETE COMMAND/SUBROUTINE DESCRIPTIONS 120

APPENDIX 3: COMMANDS AND SUBROUTINES LISTED BY CATEGORY 139

Introduction to Resampling Statistics Using Statistics101

6

Preface

“The bad news is that the subject is extremely difficult. The good news is that you--and that

means you--can understand it with hard thinking, even if you have no mathematical background

beyond arithmetic and you think you have no mathematical capability. That's because the

difficulty lies in such matters as pin-pointing the right question, but not in any difficulties of

mathematical manipulation.”

--Julian Simon, Resampling: The New Statistics, p.20

Here it is necessary to emphasize that the resampling method is used to solve the problems

themselves rather than as a demonstration device to teach the notions found in the standard

conventional approach. Simulation has been used in elementary courses in the past, but only to

demonstrate the operation of the analytical mathematical ideas. That is very different than using

the resampling approach to solve statistics problems themselves, as is done here.

Once we get rid of the formulas and tables, we can see that statistics is a matter of clear

thinking, not fancy mathematics. Then we can get down to the business of learning how to do

that clear statistical thinking, and putting it to work for you.

. . .

If you intend to go on to advanced statistical work, the older standard method can be learned

alongside resampling methods. Your introduction to the conventional method may thereby be

made much more meaningful.

--ibid., p 27

The first part of this book explores a number of familiar probability and statistics ideas from the

viewpoint of simulation using the Resampling Stats computer language. The second part

introduces and describes most of the features of the extended Resampling Stats language. I have

used the process of writing the Statistics101 program and the associated documents, including

this one, to improve my understanding of statistics. If you are a student, I hope these efforts will

help you learn statistics too. If you are a professional using statistics in your work, I hope that

Statistics101 with its resampling approach will be a useful addition to your kit of tools. If you

find any errors or have any suggestions, I would appreciate it if you would send them to me so

that I can incorporate them into the document(s). You can email me at john@statistics101.net.

My website is www.statistics101.net, from which you can download the Statistics101 program at

no cost.

mailto:john@statistics101.net
http://www.statistics101.net/

Introduction to Resampling Statistics Using Statistics101

7

Introduction

Resampling Stats is the name of a statistical simulation language developed by Julian Simon and

Peter Bruce. It is also the name of the computer program they developed to interpret and execute

the language. The language and the program together were designed to be a simple-to-learn tool

for teaching probability and statistics concepts. They were also intended to help students and

professionals to get correct answers to probability and statistics problems, especially in cases

where classical closed-form mathematical approaches are difficult to apply or are unavailable.

Statistics101 is a computer program that understands and executes programs written in the

Resampling Stats language. In that sense, Statistics101 is a “clone” of the original Resampling

Stats program. Unlike the original Resampling Stats program, Statistics101 is written in Java and

is therefore able to run more or less the same on any platform where Java is supported.

Moreover, Statistics101 adds many new commands to the language.

The first part of this book, Solving Probability and Statistics Problems with Statistics101,

introduces the use of Resampling Stats and Statistics101 to solve probability and statistics

problems. The second part, Language Basics, describes the extended Resampling Stats language

and the use of the Statistics101 program. Detailed information about each command in the

language is accessible directly via the Statistics101 program’s many help features. The third part,

Special Techniques, describes several programming techniques that you might find useful for

some common problems. The appendices include a glossary, a complete listing of all the

commands and supplied subroutines with a one-line description of each, and a categorized listing

of all the commands and subroutines.

How to read this book:

You may read this document in order, from start to finish. The first part, Solving Probability and

Statistics Problems with Statistics101, discusses probability and statistics from the viewpoint of

resampling. It illustrates the concepts using the Resampling Stats language, introducing the

language features only as needed. As you read, you can copy the programming examples into

Statistics101 (See the tip below). Then you can run them to see the results. If you get to

something in the language that you don’t understand, you can look for that topic in the later part

of this document, Language Basics, or in the Glossary or in the Statistics101 help system. The

Statistics101 help features are available from its Help menu on the program’s menu bar. The

Help menu provides access to video tutorials, a searchable command and subroutine index,

example programs, wizards to help with each command and a user forum.

Or, you can start with the second part, Language Basics, to get a complete picture of the

extended Resampling Stats language and then return to the beginning of this text to learn to apply

it to probability and statistics problems.

Tip: The example programs from Part 1 of this text will be found in Statistics101 by selecting the

Help>Example Programs...>Tutorial Examples menu item and choosing the appropriate file. The

titles of each program example begin with the page number from the textbook. For example, the

example called "p009TwoHeadsThreeTosses.txt" is from page 9.

If you are reading the text with a reader such as a Kindle, then the page numbers don't apply. The

file names are descriptive of the topic in the text so that you can find the right one for where you

are in the text. Open the file in Statistics101 and follow along in your reader. A number of other

Introduction to Resampling Statistics Using Statistics101

8

typical example programs, not discussed in this text, are also distributed with the Statistics101

program. You can access them via the Help>Example Programs menu.

For a much more comprehensive treatment of the resampling approach to probability and

statistics, please see Julian Simon’s free online text, Resampling: the New Statistics, which can

be found at Peter Bruce’s website, http://www.resample.com/intro-text-online/. Also, you will

find a wide variety of excellent examples using Resampling Stats and the resampling method at

http://www.Statistics101.net/PeterBruce_05-illus.pdf. All these examples will run without

change in Statistics101.

Before reading this document, it might be helpful to watch the brief overview of the Statistics101

program, which is accessible from the Statistics101 menu Help>Tutorials or directly from

http://www.statistics101.net/images/statistics101web_g000003.htm. The Flash
®
 overview

explains the major features of the Statistics101 main window and menus.

NOTE: Please make sure you have the latest version of Statistics101. You can check whether

you have the latest version by selecting the menu Help>Check for Update. You can download

the most recent version from http://www.statistics101.net/statistics101web_000003.htm.

http://www.resample.com/intro-text-online/
http://www.statistics101.net/PeterBruce_05-illus.pdf
http://www.statistics101.net/images/statistics101web_g000003.htm
http://www.statistics101.net/statistics101web_000003.htm

Introduction to Resampling Statistics Using Statistics101

9

The Resampling Method

The resampling method, as described by Julian Simon, is based on the following idea:

Beneath the logic of a statistical inference there necessarily lies a physical process. The

resampling methods...allow us to work directly with the underlying physical model by simulating

it, rather than describing it with formulae.

You use the extended Resampling Stats language to describe the underlying process and then run

the simulation using the Statistics101 program to arrive at your answer.

An interesting feature of the resampling method is that you don’t have to worry about fitting

your problem into some pre-existing category so you will be able to know what formula to use to

solve it. With resampling, you don’t have to ask yourself “Is this a binomial experiment?” or “Do

I need to use the t distribution, or z test or Chi-Square test...?” or “Does my problem fit the

assumptions of the X formula?” That’s because with resampling you don’t normally need to use

pre-existing formulas. You simply model the problem as it presents itself and the answers arise

from the model.

As a very simple example, say you wanted to know the probability of getting exactly two heads

in a toss of three coins. You could toss three coins many times, counting the number of times you

got exactly two heads and dividing by the number of tosses. That is your “underlying process.”

That would take considerable effort and time. You could also calculate it precisely if you knew

the correct formula. To know the correct formula, you would have to identify this as being in the

“binomial experiment” category. Instead, with Statistics101, you don’t care what category it

belongs to. You just simulate or “model” that process as follows (text following a single quote to

end of line is a comment describing what that line is doing. Comments are optional.):

COPY 1 2 coin ' let 1=head, 2=tails

REPEAT 1000 ' repeat the following 1000 times

 SAMPLE 3 coin tosses ' simulate toss of 3 coins

 COUNT tosses = 1 headCount ' count number of heads (ones)

 SCORE headCount results ' append heads count to "results"

END ' end of repeat

COUNT results = 2 successes ' count how many results were exactly 2

DIVIDE successes 1000 probability ' calculate the probability

PRINT probability ' print the probability in output window

The program simulates 1000 tosses of three coins and prints out the resulting probability. You

can copy the program from this document and paste it into the Statistics101 window and then run

it by clicking on the “Run” button in the Statistics101 toolbar. The output looks like this:

probability: 0.368

Here's what the above program is doing line-by-line:

1. Put the numbers 1 and 2, representing heads and tails, into a container (called a “vector”)

named “coin.” A vector is a list of numbers and/or names.

2. Repeat the following three commands (a, b, and c), in order, 1000 times:

a. Take three samples at random, with replacement, from the “coin” and put these

values into another container called “tosses.” This is equivalent to three tosses of

Introduction to Resampling Statistics Using Statistics101

10

a coin. On each repeat, “tosses” will contain three numbers, ones or twos, like

this: (1 2 1)

b. Count how many of the tosses were equal to 1 (i.e., heads). If “tosses” contained

(1 2 1), then the “headCount” would be 2.

c. Record the number of heads from this trial by appending it (using the SCORE

command) to the “results” container, which holds the results for all trials. If

headCount were 2, then 2 would be added to the end of the “results” container.

3. Count how many of the 1000 results in the results container were equal to two, i.e., two

heads.

4. Calculate the probability by dividing the number of successes by the number of trials.

5. Print the probability.

Notice that if you run the program several times you will get a slightly different answer each

time. That is not an error. It is the result of the fact that you are simulating a real process (tossing

coins and counting the results). If you actually carried out the process several times with real

coins you would also get slightly different results each time. In fact, you would be very surprised

if the results were all exactly the same. The only way the results would all be the same is if the

number of repetitions were infinite instead of as here, 1000. By contrast, the formula that

calculates the probability of two heads out of three always gives the same result (0.375) because,

in effect, it assumes an infinite number of trials. By increasing the number of trials, you get a

result closer and closer to the formula’s result.

Questions for discussion:

The probabilities computed by a resampling simulation vary slightly from run to run and from

the exact formula’s result. Does that invalidate the resampling method?

Assuming that your resampling simulation is correct, how can you improve its precision, i.e.,

how can you make the result closer to the ideal answer?

Solving Probability and Statistics Problems with Statistics101

11

PART 1: Solving Probability and Statistics Problems with
Statistics101

To solve probability and statistics problems using Statistics101 you write Resampling Stats

programs that model the process underlying your problem. You run the program “model” and it

produces the desired result. For purposes of simulation, “probability” is defined as the ratio of

“successful” outcomes to the number of trials. A successful outcome is simply the outcome

whose probability you want to compute.

In this section, I will develop several example programs to give you the understanding needed to

write your own programs. After you read this section, I recommend that you look at the excellent

examples showing how to solve a wide variety of statistical problems using Resampling Stats

and the resampling method at http://www.statistics101.net/PeterBruce_05-illus.pdf.

Probability versus Statistics

In probability problems, you reason from the known population to the unknown random sample.

A probability problem is therefore an exercise in deduction, i.e., reasoning from the general (the

population) to the particular (the sample). In (inferential) statistics problems, you reason from

the known random sample to the unknown population. An inferential statistics problem is

therefore an exercise in induction, i.e., reasoning from the particular to the general.

Deductive reasoning has the property that if the premises are sound and the reasoning process is

correct, then the final deduction is correct and certain. Inductive reasoning has the property that

there can be no certainty in the result because the starting premises have limited information

about the general case and are yet being used to try to characterize the general case. If all the

swans that you have seen have been white, would it be valid to say that “all swans are white”? So

statistical results are most often stated in the form of “confidence intervals” or “hypothesis tests,”

which try to maximize the amount of information about the population that can be derived from a

limited sample.

Building a Probability or Statistics Model

There are three main conceptual components of a probability or a statistics “model” in

Resampling Stats: the population, the sample, and the process. Population refers to the entire set

of objects from which a sample is drawn. Sample refers to a randomly selected subset of the

population. Process refers to the method you use to select your sample from the population and

how you separate desired outcomes from the undesired outcomes. I will discuss these

components one at a time.

Modeling Populations

In probability problems, you know the population. In classical probability studies, the typical

population may be a deck of cards, a fair coin, an urn with known numbers of different-colored

balls, a pair of dice, a roulette wheel, and so on. These are useful populations to communicate

probability principles with because they are widely known and very clearly defined. Given such

a population, you then try to find the answer to a question about various random samples taken

from that population.

http://www.statistics101.net/PeterBruce_05-illus.pdf

Solving Probability and Statistics Problems with Statistics101

12

In Resampling Stats you don’t have decks of cards, you don’t have colored balls and urns. All

you have are numbers and names. Therefore, you have to choose sets of numbers or names to

represent the relevant subsets of a population in the same proportions that they compose the

population.

I use numbers instead of Named Constants in this section so you will have a clear idea of how

the models work. In subsequent sections I will use Named Constants where possible, to minimize

the use of arbitrary code numbers. See the section Named Constants for how to replace numbers

with names to make your simulations easier to write and read.

For example, if you want to represent a fair coin, you might choose the number 1 to represent

Heads and 2 to represent Tails.

You could model this in Resampling Stats like this:

COPY 1 2 coin

This line is a Resampling Stats command. A Resampling Stats program consists of a sequence of

commands. (See Appendix 2 or Appendix 3 for a list of the commands.) The first word on a line,

in this case, “COPY’, is always the name of a command. Following the command name are the

“arguments” that the command operates on. Arguments are the inputs and outputs of a command.

This particular command copies the two numbers into the vector named coin. The two numbers

are input argument vectors; the variable coin is the output argument vector. A vector is just a list

of numbers. Each number in the vector is called an element. A vector may contain zero or more

numbers. A vector may or may not have a name.

If you want to see the contents of coin, you can add a PRINT command to make a short program

like this:

COPY 1 2 coin

PRINT coin

If you copy those two lines into Statistics101 and run them, you will get this result:

coin: (1.0 2.0)

As you can see, the PRINT command prints the name of the vector coin and its contents to the

Statistics101 output window. A vector is represented as a list of numbers separated by spaces and

enclosed in parentheses. A single number without parentheses, such as 1 or 2, is considered to be

an unnamed vector with one element.

Later, you will see how to “flip” the coin (randomly select one of the two numbers) using the

SAMPLE command. But what if you want to model a weighted coin that you (somehow) know

will come up Heads 6o percent of the time? You could take one of several approaches. You

could use the same two numbers as above to represent Heads and Tails, but now, you have to put

them in the vector in proportion to their weighting in the coin, like this:

COPY 6#1 4#2 unfairCoin

The m#n notation is a shorthand way to represent “m copies of the number n.” It is easier than,

but equivalent to writing:

COPY (1.0 1.0 1.0 1.0 1.0 1.0) (2.0 2.0 2.0 2.0) unfairCoin

Either way, you have put 6 ones and 4 twos into your “unfairCoin.” If you then print out

unfairCoin, this is the result:

Solving Probability and Statistics Problems with Statistics101

13

unfairCoin: (1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0)

Thus if you were to select a number randomly from the unfairCoin vector, with each element of

the vector having an equal chance, you would have a 60% chance of getting a Head (1) and a

40% chance of getting a Tail (two).

An alternative approach would be to use the numbers from 1 to 10 and say that six of them

represent Heads and four of them represent Tails:

COPY 1,10 unfairCoin

In this command, the notation “n,m” is a shorthand way to represent all the integers between n

and m, inclusive. So after this command executes, unfairCoin will contain all 10 numbers from

one through 10, in order, which would print out like this:

unfairCoin: (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

For the current example where our unfair coin is biased 60% heads, you would say that the

numbers 1 through 6 represent Heads while 7 through 10 represent Tails. Then if you randomly

select a number from the vector, you would take it as Heads or Tails depending on which group

of numbers it came from. If a selected number were between 1 and 6, then you would execute the

commands appropriate for heads. If the number were not between 1 and 6, then you would

execute the commands for tails
1
.

If your weighted coin had a less convenient imbalance, say 65% Heads, you could still use either

of the above approaches, but would have to use bigger vectors to allow for the extra precision

required to represent five percent increments. Here’s how the two above approaches would

change to model the new weighting:

COPY 65#1 35#2 unfairCoin

and

COPY 1,100 unfairCoin

The first command puts 65 ones and 35 twos into the coin. The second puts 100 numbers into it

with the numbers 1 through 65 representing Heads and the others representing Tails
2
.

When you model a population, you want to represent the subsets of that population that are

relevant to your problem. For example, if the population is a 52-card poker deck there are several

subsets that you might or might not need to model depending on the question you are trying to

answer. If you want to know probabilities related to the values of the cards, but you don’t care

about the cards’ suits, you might use

COPY 1,13 1,13 1,13 1,13 deck

1
 You could do that using Resampling Stats like this:
SAMPLE 1 unfairCoin result

IF result between 1 6

 ADD 1 headCount headCount '(Or other commands to be executed for heads)

ELSE

 ADD 1 tailCount tailCount '(Or other commands to be executed for tails)

END

2
For five percent increments, you really only need 20 numbers, with 1 through 13 representing the 65% and 14

through 20 representing the 35%, but using 100 makes it easier to relate the numbers to the percents.

Solving Probability and Statistics Problems with Statistics101

14

or as an alternative,

COPY 4#1,13 deck

This gives you 4 sets of cards from Ace (1) to King (13) but no indication of their suit.

If you care about the suit, you can use something like this:

COPY 1,52 deck

When you sample from this population, you would interpret numbers from 1 to 13 to be of one

suit, say Hearts, 14 to 26 to be of another suit, etc. Or, if you cared only about the suit, you could

use the numbers 1 through 4 to represent them:

COPY 13#1 13#2 13#3 13#4 deck

The examples given so far have given you some ideas that you will find useful in solving other

problems, but there is no magic or “one population fits all problems” solution. Defining the right

model for the population in your problem is not always easy. Careful thought is necessary, as it

is in every aspect of probability and statistics. If you need to deal with populations having

multiple related attributes, read the sections How to Sort Related Vectors and How to Shuffle

Related Vectors.

So far we have been modeling only discrete finite populations. Discrete populations have a

number of known (usually) integer values. There is just one standard discrete distribution model

available as a Resampling Stats command, the Poisson distribution, which is modeled using the

POISSON command. I won’t discuss the POISSON command any further here, but it has many

useful applications. If you are interested, look it up in the Statistics101 help. The binomial

distribution is another discrete distribution model, but there is no Resampling Stats command

with which to generate binomial samples
3
. (The BINOMIALPROB command computes

probabilities directly without using simulation.) Nevertheless, our coin-flipping simulations are

examples that use the binomial distribution without explicitly mentioning it.

You can also model populations that consist of infinite number of measured or fractional values.

These are called “Continuous Distributions.” Several such models are built into the Resampling

Stats language. The most common and familiar one would be the NORMAL command. The

others are EXPONENTIAL, LOGNORMAL, PARETO, UNIFORM, and WEIBULL.

For example, if you know that the population you are dealing with is “normal” (Gaussian) and

you know the population’s parameters (mean and standard deviation), you can use the NORMAL

command to model that population. The NORMAL command and all the other distribution

commands combine the modeling of the population with the generation of samples. For example,

if you wanted 10 samples from a population whose mean is 100 and standard deviation is 20,

then the following command would do the job and put the 10 samples into the vector, “samples”:

NORMAL 10 100 20 samples

I will discuss binomial sampling and continuous distributions in more detail later in the section

Probability Distributions. But first, let’s look at the second component of a probability or

statistics model, sampling.

3
There is a subroutine named BINOMIALSAMPLE in the lib directory that will generate binomial samples.

Solving Probability and Statistics Problems with Statistics101

15

Modeling Samples

Sampling with replacement

Once you’ve defined your population, you will want to generate samples from it. Going back to

our fair coin example, you can make one change in its population definition: since you don’t care

what numbers represent Heads and Tails, you can just use their names and make the code more

readable. The ENUM command allows you to create names that you can use as if they were

numbers. The names can even be used as elements of a vector. Now, how do you “flip” the coin?

You flip the coin using the SAMPLE command. If you want one flip, you would do it this way:

ENUM heads tails 'Create names to enumerate the possible outcomes

COPY heads tails coin 'create model of coin (copy names into coin vector)

SAMPLE 1 coin coinSample 'randomly choose one value from coin ("flip it")

PRINT coinSample

This SAMPLE command chooses one value at random from the two in coin and puts a copy of

that choice in coinSample. That is equivalent to flipping one coin. If you run the above three-

line program several times, you will see that sometimes coinSample is a heads, other times it is

a tails.

If you change the command to:

SAMPLE 3 coin coinSample

then you have sampled coin three times, with replacement, and copied the three results into the

coinSample vector. This is equivalent to flipping one coin three times or flipping three coins one

time. If you run the program with this new SAMPLE command you will get output that looks

like this:

coinSample: (tails tails heads)

Notice that even though coin has only two values in it, you can sample it as many times as you

want, because SAMPLE does not remove its chosen value from the vector. This method of

sampling, where choosing a particular sample one time doesn’t keep you from choosing that

same sample again, is called “sampling with replacement.” If, after you draw a card from a deck,

you replace it back into the deck before you make the next draw, that is another example of

sampling with replacement.

In general, then, when you want to sample with replacement from a finite population, the

SAMPLE command is the one to use.

Sampling without replacement

In the previous section you saw how to use the SAMPLE command to simulate random sampling

with replacement from a given population. In this section you will see how to simulate random

sampling without replacement. “Sampling without replacement” means that once you choose a

particular item from a population, you do not replace it into the population. Thus, you can’t

choose that same item in subsequent choices.

Let’s go back to our card deck. Suppose you wanted to simulate dealing a 5-card hand to

discover the probability of getting two aces in the hand. First, you would decide how to simulate

the deck (the population). In this case, you don’t care about the cards’ suits, only their values. So

you decide to use this model:

Solving Probability and Statistics Problems with Statistics101

16

COPY 1,13 1,13 1,13 1,13 deck '1 = Ace

Now you want to simulate dealing the hand of five cards, but first you notice that the numbers in

the deck are all in the very predictable order depicted in the COPY command. They are not

shuffled. So you look at the list of Resampling Stats commands in Appendix 2 or Appendix 3

and find a command named SHUFFLE. After reading the help text for it, you decide it is a good

fit. So you add that command to your incipient program to get:

COPY 1,13 1,13 1,13 1,13 deck '1 = Ace

SHUFFLE deck deck 'shuffle deck, put result in deck

If you put print statements after each line you will see the results of the shuffle.

Before shuffle:

deck: (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ...)

After shuffle:

deck: (7.0 12.0 12.0 6.0 10.0 2.0 7.0 13.0 4.0 9.0 ...)

Each time you shuffle deck you will get a different order of its contents. Now the simplest way

to “deal” the cards is to take the first five cards from the deck. The TAKE command is designed

to copy desired elements from its input vector to its output vector. The desired elements are

specified by another vector. So the program becomes:

COPY 1,13 1,13 1,13 1,13 deck '1 = Ace

SHUFFLE deck deck 'shuffle deck

TAKE deck 1,5 hand 'Take first 5 from deck; put in hand

This TAKE command can be read as “From deck, take elements 1 through 5 and copy them to

hand.” So now you have dealt a hand. What you have accomplished up to this point is to take a

sample without replacement from a population. For any case, not just a deck of cards, where you

have to sample a population without replacement, you can use the SHUFFLE and TAKE

commands in tandem.

You might be objecting, “That’s not the way you deal cards. Usually, you deal one card to each

player before giving the next card to the first player. You don’t give the first five cards to player

one, then the next five to player two, and so on.” That is true. However, if the deck is truly

shuffled, the probabilities resulting from the two ways of dealing are identical. Although the two

ways of dealing will make a difference to a particular player in a particular game, on average the

results will be the same. And on average, if many games are played, the method of dealing (as

long as it is honest) will not affect the outcome for any player. If that isn’t intuitively clear to you

after thinking about it for a while, try writing a Resampling Stats program that compares the two

methods. Hint: you’d be comparing the results of using this command

TAKE deck 1,5 hand 'Take first five “cards” from deck

with using this one:

TAKE deck (1 5 9 13 17) hand 'skip cards that go to 3 other players.

In general, to sample without replacement, you will usually use the SHUFFLE and TAKE

commands together.

Solving Probability and Statistics Problems with Statistics101

17

Modeling Processes

“Process,” the third part of a model, refers to the method you use to select your sample from the

population and to separate the desired outcomes from the undesired outcomes. In our current

problem, the process is to record how many times the hand contains two aces. This means you

have to shuffle the deck, draw a hand, count how many aces are in the hand, and if there are two,

record that as a success. You do this repeatedly, and then calculate the proportion of successes

out of the number of trials as the desired probability.

Having come this far, you might as well complete the program. How many aces does the hand

contain? You need to count how many ones are in the simulated hand. You find the COUNT

command in the list of commands in Appendix 2 or Appendix 3 and see that it is suitable. It

counts how many elements of a vector pass a certain test. Here you want it to count how many

aces are in a hand:

CONST 1 ace 'Assigns the name “ace” to the number 1

COPY 1,13 1,13 1,13 1,13 deck 'create the deck

SHUFFLE deck deck 'shuffle deck

TAKE deck 1,5 hand 'Take first 5 from deck; put in hand

COUNT hand = ace aceCount 'Count the aces (ones) in the hand

I’ve added a named constant, “ace,” using the CONST command so I can use it in the COUNT

test instead of using a bare “1” there. If COUNT finds two aces, you want to record that as a

success. That requires using two new commands, IF and LET. Adding those to the program gives

this:

CONST 1 ace '1 = Ace

COPY 0 successCount 'initialize a variable to count successes

COPY 1,13 1,13 1,13 1,13 deck 'create the deck

SHUFFLE deck deck 'shuffle deck

TAKE deck 1,5 hand 'Take first 5 from deck; put in hand

COUNT hand = ace aceCount 'Count the aces (ones) in the hand

IF aceCount = 2 'If the hand had 2 aces...

 LET successCount = successCount + 1 '...increment the successCount vector

END

The LET command expresses mathematical formulas using familiar operator symbols such as +,

-, *, / and some command names as will be described later in the section on The LET Command.

In this example, you can read the LET command as “Let successCount equal its current value

plus one.” Under the control of the IF command, the LET command increments the

successCount vector only if hand contained two aces.

The IF command can control many lines, so it must be told where its control ends. That’s what

the END command is for: it marks the end of the IF command’s scope. So far, this is one trial

consisting of one shuffle and one hand. That’s not enough to determine a probability, so you

decide you need to repeat the process many times. The REPEAT command is designed for this

purpose. You end up with this:

CONST 1 ace '1 = Ace

COPY 0 successCount 'initialize a variable to count successes

COPY 1,13 1,13 1,13 1,13 deck 'create the deck

COPY 1000 numberOfTrials 'could use CONST here instead of COPY

REPEAT numberOfTrials 'Repeat the following 1000 times

 SHUFFLE deck deck 'shuffle deck

 TAKE deck 1,5 hand 'Take first 5 from deck; put in hand

Solving Probability and Statistics Problems with Statistics101

18

 COUNT hand = ace aceCount 'Count the aces (ones) in the hand

 IF aceCount = 2 'If the hand had 2 aces...

 LET successCount = successCount + 1 'increment the successCount vector

 END

END

LET probability = successCount / numberOfTrials

PRINT probability

The REPEAT command’s scope, like that of the IF command, terminates with an END

command. The REPEAT command is one of four “looping” commands. The other three are

FOREACH, WHILE, and UNTIL. Each of the looping commands has a different way of

deciding how many times to repeat the commands in its scope.

 Notice that this program uses a variable name, numberOfTrials, for the number of trials. The

number of trials is used in two places in the program and if you wanted to change it, you would

have to remember to change it in both places. Using a variable means that you only have to make

the change in one place, the line where the variable is given its initial value. The program also

uses the CONST command to create a Named Constant.

One run of this program produced the answer:

probability: 0.039

Probability Examples

Now that we’ve collected some ideas on how to model populations, samples, and processes in

Resampling Stats, we can proceed to apply these ideas to problems in probability.

Independent Events

Independent events are those for which the outcome of one trial is not related or dependent on

the outcome of another. Independent events often can be modeled by sampling with replacement.

As the simplest example, take the fair coin. A coin doesn’t have any memory of its past so each

toss is “independent” of any and all previous tosses. By definition, the fair coin will come up

heads on average 50% of the time. Say you wanted to know the probability that if you flip a coin

3 times you will get exactly two heads. You could answer that question by flipping the coin

thousands of times, recording how many times each sequence of three flips had exactly two

heads and then dividing that number by the number of groups of three you had tossed—if you

had enough time and interest. Or you could apply the classical solution if you know that. The

classical solution is achieved by counting the number of ways that three coins can come up with

two heads (3) and dividing by the number of different ways that three coins can fall (8) to get the

probability of 3/8, or 0.375. With Statistics101 you use the method of simulating the thousands

of coin tosses and recording the results. You have seen a program that performs this simulation

before in this document. I repeat it here for ease of reference.

ENUM heads tails

COPY heads tails coin

COPY 1000 numberOfTrials

REPEAT numberOfTrials

 SAMPLE 3 coin trial ' flip coin 3 times

 COUNT trial = heads headcount

 SCORE headcount headCounts

END

Solving Probability and Statistics Problems with Statistics101

19

COUNT headCounts = 2 successCount

LET probability = successCount / numberOfTrials

PRINT probability

Running this program three times produced the following outputs:

probability: 0.367

probability: 0.375

probability: 0.371

You know from the classical method that the correct answer is 0.375. Our simulation got results

that hover around that value. If you needed more precision, you could do more than 1000 trials.

But an important result of using simulation is that you clearly see the variation in the results.

While 0.375 is the “exact” answer, in the real world you will rarely experience exactly 0.375. It

is very important in probability and statistics to keep that variability of results in mind. After all,

probability is probability, not certainty.

For variety, let’s look at another example of independent events. This example was found in

CliffsQuickReview Statistics. A dartboard is divided into twenty equal wedges, ignoring the bull's

eye. Only six of the twenty wedges are worth points, so the probability of scoring on one throw

is 6/20, or 0.3, assuming your throws always hit the board. What is the chance of hitting at least

one scoring region in three consecutive throws? (From CliffsQuickReview Statistics, p.48).

ENUM score noScore

COPY 3#score 7#noScore scoringProbability

COPY 1000 numberOfTrials

COPY 0 successCount

REPEAT numberOfTrials

 SAMPLE 3 scoringProbability throws

 COUNT throws = score numberOfScores

 IF numberOfScores >= 1

 LET successCount = 1 + successCount

 END

END

LET probability = successCount / numberOfTrials

PRINT probability

The first task is to create a simulation for the probability of scoring. That was done by putting

three “score” tokens and seven “noScore” tokens into a scoringProbability vector. This is

our “population.” It is as if you had labeled three pieces of paper with the word “score” and

seven with “noScore” and put them in a hat. Next, you want to simulate the process. Using the

SAMPLE command to draw three tokens at random, with replacement, from the

scoringProbability vector simulates three independent throws at the dartboard. The three

throws constitute one trial. Next, you want to see if this trial meets the criterion for success, i.e.,

did it have at least one throw that scored? So you count the number of times score occurs in

your sample of three. If that number is at least one (>=1), then you record it as a success by

incrementing the successCount. After doing this 1000 times, you divide that sum by the number

of trials to obtain the probability.

Dependent Events

In the previous problem of the two heads in three coin tosses, all the events were independent of

one another. In other words, if one of the three tosses came up heads, that had no influence on

the probability of any of the other tosses. Here’s a problem where the outcome of one event

Solving Probability and Statistics Problems with Statistics101

20

affects the probability of the second. What is the probability of drawing an ace at random from a

deck of cards, and then on your second draw drawing another ace? Clearly when you start, there

are 4 aces in the deck of 52 cards. So the probability of getting an ace is 4/52. Once you’ve

drawn an ace, there are only 3 aces left in the deck of now 51 cards. So on the second draw, the

chance of getting an ace is 3/51. This is an example of sampling without replacement. The

selection process results in the probability of the second draw depending on the outcome of the

first draw. Events related in this way are called “dependent events.” Dependent events often can

be modeled by sampling without replacement. As the simplest example, take the fair coin. You

might know that the rule that applies here is to multiply the two probabilities together. Thus the

answer to the question would be 4/52 x 3/51 = .00452. Here is a Resampling Stats program that

simulates drawing 2 cards from the deck many times:

ENUM 1 ace

COPY 1,13 1,13 1,13 1,13 deck

COPY 10000 numberOfTrials

COPY 0 successCount

REPEAT numberOfTrials

 SHUFFLE deck deck

 TAKE deck 1 firstCard

 IF firstCard = ace

 TAKE deck 2 secondCard

 IF secondCard = ace

 LET successCount = 1 + successCount

 END

 END

END

LET probability = successCount / numberOfTrials

PRINT probability

This program first creates a simulated card deck by copying four sets of sequences from 1 to 13

into a vector called “deck.” These 4 sets each represent one of the suits in the deck. I let the

number 1 represent the Ace. Thus, there are 4 aces in the deck of 52 cards.

Next it creates a variable, numberOfTrials, containing the number of repetitions to perform. It

uses this variable as the argument of the REPEAT command. Notice that it also uses this variable

later in the program when it divides to calculate the probability. This way, if you want to change

the number of repetitions, you only need to change it in one place. Then it initializes a counter,

successCount, that will count the number of successes.

Next the program uses the SHUFFLE and TAKE commands. SHUFFLE randomly rearranges

the elements in the deck vector. TAKE copies the first value into the variable firstCard. The IF

command compares firstCard to ace (1) and if it is an Ace, TAKE looks at the second card. If

this second card is also an Ace, the LET command adds one to the counter. The SHUFFLE and

TAKE commands used together in this way accomplish the goal of sampling without

replacement. When the REPEAT command completes its many iterations, the successCount

will contain the number of times that two aces were drawn. The final LET command divides the

number of successes by the number of trials to yield the probability. Finally, PRINT outputs

the probability.

Running this program a few times produced these results:

probability: 0.0052

probability: 0.0053

Solving Probability and Statistics Problems with Statistics101

21

probability: 0.0043

probability: 0.0045

This is a low probability occurrence so it is necessary to use a large number of trials to get a

reasonably accurate result.

Summarizing, the general resampling approach in probability problems is to simulate the

universe, take repeated samples from that universe, test the samples for “success,” then find the

ratio of the number of successes to the total number of trials. That ratio is the desired probability

value. For independent events, use the SAMPLE command, which simulates sampling with

replacement. For dependent events, use the SHUFFLE command with the TAKE command,

which together simulate sampling without replacement.

You will find many probability examples in the folders named “GeneralExamples” and

“SubroutineExamples” that are in the “ResamplingPrograms/ExamplePrograms” folder in your

Statistics101 installation folder.

Question for discussion:

Is there any probability problem that cannot be solved by simulation that can be solved by other,

more traditional means?

Probability Distributions

In addition to populations such as decks of cards, dice, coins, etc., there are a number of more

abstract populations that are often useful. These populations are described mathematically by

probability distributions.

A probability distribution describes the values that a random variable can take on and their

associated probabilities. There are two broad classes of probability distributions: discrete and

continuous. A discrete distribution is the distribution of a discrete random variable. A discrete

random variable has a finite number of possible values, each with an associated probability. A

continuous distribution is the distribution of a continuous random variable. A continuous random

variable has an infinite number of possible values. Since it has an infinite number of values, the

probability of any one value is effectively zero. Having zero probability for every value is not

particularly useful, therefore the probability distribution for a continuous random variable is

defined so that it gives the probability that a value will fall within some interval. There is one

constant rule that applies to all probability distributions, discrete and continuous: the sum of the

probabilities for all the possible values must be unity.

We will look at the two types of distributions in turn.

Discrete Distributions

Discrete Uniform Distribution

An example of a discrete distribution would be the result of tossing a die. Each face of the die

has a 1/6 probability of occurring. So the probability distribution for the die consists of the 6

pairs of numbers, with the first number being the face and the second the probability: (1, 1/6), (2,

1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6). Since the probabilities of all the possibilities are equal,

this is called a “uniform” distribution, or more specifically, a “discrete uniform” distribution.

Here is a program that will generate a histogram for rolling a fair die:

Solving Probability and Statistics Problems with Statistics101

22

COPY 1,6 die

SAMPLE 100000 die throws

HISTOGRAM binsize 0.1 percent throws

This HISTOGRAM command is using two optional keywords. The first, binsize n, where n is

any positive number, sets the width of a histogram bin to n. The second keyword, percent, causes

the frequencies to be displayed in percents rather than in raw numbers. For more of

HISTOGRAM’s options, refer to the program’s help file. Here is the resulting histogram. You

can see that all the bins are very close to the same height (1/6 or about 16.7%), as expected for a

uniform histogram.

Other discrete distributions include the binomial distribution and the Poisson distribution. We

won’t discuss the Poisson distribution here (Statistics101 has a POISSON command that you can

learn about in the program’s help documentation), but the next section will look at the Binomial

Distribution.

Binomial Distribution

A Binomial distribution is the result of a process which has only two possible outcomes (for

example, heads and tails, win or lose, score a touchdown or not), where each outcome has a

complementary probability (i.e., they must sum to one; for the coin example, 0.5 for heads and

0.5 for tails), and the outcome of each trial is independent of the outcomes of any previous trials.

We’ve seen examples with fair and unfair coins that simulate the conditions for a binomial

distribution. As you will recall, it wasn’t even necessary to identify those as examples of a

binomial distribution. The results just followed automatically from the simulation.

In general, you simulate a binomial population using a vector that contains multiples of two

different values in quantities proportional to their probabilities. For example, if the probability of

success is 0.3, you might simulate the population like this:

COPY 3#1 7#2 binomialPopulation '1 = success, 2 = failure

This above command results in binomialPopulation having these contents:

Solving Probability and Statistics Problems with Statistics101

23

binomialPopulation: (1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0)

Then, you use the SAMPLE command to select a given sample size with replacement from the

binomial population:

SAMPLE 15 binomialPopulation mySample

Then, you count the number of successes and save it in a scoring vector:

COUNT mySample = 1 successCount 'Count how many 1s are in mySample

SCORE successCount successList 'Append successCount to successList

Repeat the above three commands say 10000 times and successList can be put in a histogram to

show the binomial distribution results.

Putting it all together, you have the following program:

COPY 3#1 7#2 binomialPopulation '1 = success, 2 = failure

REPEAT 10000

 SAMPLE 15 binomialPopulation mySample

 COUNT mySample = 1 successCount 'Count successes, how many 1s in mySample

 SCORE successCount successList 'Append successCount to successList

END

HISTOGRAM percent binsize 0.1 successList

which produces the following histogram:

Statistics101 doesn’t have a built-in command that generates binomial samples. (The

BINOMIALPROB command computes probabilities, it doesn’t produce samples.) And most of

the time you will generate binomial samples using several commands as shown above. But you

can also use another approach that was discussed earlier, that is to use a sequence of numbers,

say the integers from 1 to 100, and use an IF command or a test to set the division point between

success and failure. For example, if you wanted to generate binomial samples where the success

probability is 0.6 or 60%, you can do something like this:

'Program to select a given number of samples from

'a binomial distribution with a given percent probability

Solving Probability and Statistics Problems with Statistics101

24

'of success.

ENUM success failure

COPY 60 successPercentProb 'Arbitrarily choose 60%

COPY 10 sampleSize

REPEAT sampleSize

 SAMPLE 1 1,100 result

 IF result <= successPercentProb

 SCORE success sample

 ELSE

 SCORE failure sample

 END

END

PRINT sample

The ELSE command divides the IF command into two parts, the first part is executed only if the

IF test evaluates to true. The second part, after the ELSE, is executed only if the IF test evaluates

to false. This program produces the following output (yours will differ due to the randomness of

the SAMPLE command):

sample: (success failure success failure success failure success failure

success success)

If you use the above program to generate binomial samples for success probabilities less than 1%

or for non-integer percent probabilities such as 25.5%, it will not generate accurate answers. You

would have to have more than just 100 numbers in the population to accommodate those cases.

For example, to be accurate to within 0.5 percent you would need to use 200 numbers.

Nevertheless, as you will see shortly, this method can be generalized to work for any level of

precision by using an infinite population instead of a finite sequence of integers.

Continuous Distributions

Continuous Uniform Distribution

As stated earlier, a continuous distribution has an infinite number of possible values. One simple

example of a continuous distribution is the “continuous uniform” distribution. Like the discrete

uniform distribution, all its possible values have equal probabilities, but there are an infinite

number of possible values so the probability of any one specific number will be effectively zero.

You can imagine a die with an infinite number of sides. A continuous uniform random variable

is simulated by the UNIFORM command in Resampling Stats. Here is a program to generate a

histogram of a uniform continuous random variable between 1 and 6.

UNIFORM 100000 1 6 samples

HISTOGRAM percent binsize 0.1 samples

And here is the resulting histogram.

Solving Probability and Statistics Problems with Statistics101

25

Probability Density

You can see, in contrast to the earlier discreet uniform distribution based on rolling a die, that

there are no gaps between the bins. That's because there is an infinite number of numbers

between 1 and 6, not just the six integers, and each has some chance of being selected.

The percent frequency for any one of the bins is computed as:

percent frequency = (number of samples in the bin) / (total number of samples) * 100

which is, by definition, the same as:

percent frequency = (probability of being in this bin) * 100.

Therefore, using percent on the Y scale allows you to read the Y scale as if it were a probability

expressed as a percentage. For example, the probability that a randomly chosen number between

1 and 6 will fall in the first bin (or any bin) is about 2%. If you wanted to know the probability

that a number chosen randomly would be in the first two bins, you would just add the

probabilities of the two bins, which means to add their bin heights. This would give you a

probability of about 4%. More generally, if you wanted to calculate the probability for any

interval, say between 3 and 4, you would just add the heights of all the bins in that interval. Since

for a uniform random variable they are all the same height, you can just multiply the number of

bins, 10, by the height, 2%, to get 20% as the probability over the interval from 3 to 4.

In this example there are fifty bins. Since the bins are all the same width and this is a uniformly

distributed variable, they each get about the same share of the samples. So the probability that a

sample will fall in a particular bin is one fiftieth (0.02 or 2%) of the probability (1.0) that it falls

within the range one to six. If you cut the bin size in half, doubling the number of bins, with

these commands,

UNIFORM 100000 1 6 samples

HISTOGRAM percent binsize 0.05 samples

Solving Probability and Statistics Problems with Statistics101

26

then the height of each bin will also be cut in half because now the probability of falling into any

one of the smaller bins is one half of what it was with the larger bins. Here is the histogram for

this case:

As you can see, the height is now about 1.0 percent. So to calculate the probability that a

randomly selected number would fall between 3 and 4, now you must multiply 1% by 20 since

there are 20 bins between 3 and 4. Once again, you get 20%.

Now, if you were to continue to shrink the bin width so that it approached zero, the bin heights

would also approach zero because each bin would hold a smaller percentage of the population.

Note that this does not happen for discrete distributions, such as the six-sided die or the binomial.

Therefore, for continuous distributions it is more common divide the height by the bin width to

produce what is called a probability “density” curve. Here is how that would look in Resampling

Stats:

UNIFORM 100000 1 6 samples

HISTOGRAM density binsize 0.05 samples

Using the density keyword, the histogram divides each bin’s count by the bin’s width, like this:

density = (number of samples in the bin) / (total number of samples) / (bin width)

or,

density = (probability of being in this bin) / (bin width)

The graphical result of the above two-line program is shown next.

Solving Probability and Statistics Problems with Statistics101

27

You can change the bin size in the program and notice that the bin heights will remain hovering

around 0.2 no matter what size you choose. But remember that the Y axis is no longer a

probability. To get the probability, you have to multiply the bin height, or density, by the bin

width. This is the area of the bin. To find the probability that a sample would fall between any

two points on the X axis, you would sum the areas of the bins between those two points to get

the total area between the points. Conceptually, as the bin width approaches zero, the summation

of the bins between the two points approaches the integral of the density curve between the two

points.

Why is the density for this example 0.2? Because the area of the entire density curve, being a

probability, must be 1.0. And since the width is 6 - 1 = 5, then for the simple case of this uniform

continuous distribution, the height must be 1.0/5 = 0.2.

The various probability distributions are often useful in Monte Carlo simulations in fields outside

of probability and statistics. But when solving probability and statistics problems using the

resampling method, there is seldom a need to use the predefined probability distributions unless

you happen to know that one of them characterizes your population of interest.

A Simple Application of the Continuous Uniform Distribution

The continuous uniform distribution can be used to generate samples for other types of

distributions, even discrete ones. In our earlier discussion of the discrete binomial distribution, I

developed a short program that generated samples from such a distribution. The program worked

by choosing samples from the sequence of integers between 1 and 100. That method had the

limitation that it would only work for integer values of percent probabilities. But now that we

know about the UNIFORM command, we can use it as an infinite number of integer and non-

integer values to overcome that limitation. Now, instead of choosing from 100 integers, we will

be choosing any number from the interval between 0 and 100. Here is the program modified to

use the UNIFORM command.

'Program to select a given number of samples from

'a binomial distribution with a given percent probability

Solving Probability and Statistics Problems with Statistics101

28

'of success.

ENUM success failure

COPY 60 successPercentProb

COPY 10 sampleSize

REPEAT sampleSize

 UNIFORM 1 0 100 result

 IF result <= successPercentProb

 SCORE success sample

 ELSE

 SCORE failure sample

 END

END

PRINT sample

This program uses the continuous uniform distribution to generate a number between 0 and 100.

The number will most likely not be an integer. If the number is less than or equal to the

successPercentProb, then that is scored as a success; otherwise it is scored as a failure. It

repeats this selection as many times as needed to get the required number of samples. Each

sample is appended by SCORE to the sample vector. When the program completes, sample will

contain the random selection of the enums, success and failure.

Introducing Subroutines

Since the need for computations like these might occur repeatedly, it would be convenient if

there were a way to package them as a command so that you only need one line to do the whole

job. The way to package a set of commands is to put them in a subroutine. A subroutine is like a

short program that can be invoked by another program. A subroutine is declared using the

NEWCMD command, which gives the subroutine a name and a list of argument names. You

invoke a subroutine by using its name as a command in exactly the same way you invoke built-in

commands.

So I’ll revise the above program to make it a subroutine that generates samples for the general

binomial case and while I’m at it, I will make it use actual probability numbers (i.e., between 0

and 1) instead of percent probabilities:

'Subroutine to select a given number of samples from

'a binomial distribution with a given probability

'of success.

ENUM success failure

GLOBAL success failure

NEWCMD BINOMIALSAMPLE sampleSize successProb sample

 CLEAR sample

 REPEAT sampleSize

 UNIFORM 1 0 1 result

 IF result <= successProb

 SCORE success sample

 ELSE

 SCORE failure sample

 END

 END

END

The NEWCMD command introduces the subroutine. Its first argument, BINOMIALSAMPLE,

is the name to be given to the subroutine. Following the subroutine name are three arguments

Solving Probability and Statistics Problems with Statistics101

29

that are analogous to command arguments. They are called “dummy arguments” because when

the subroutine is later invoked, these arguments will be replaced with your actual arguments that

may have different names. All the commands between the NEWCMD and the final END

command constitute the subroutine.

The GLOBAL command makes the constants success and failure visible within the

subroutine. It is needed because subroutines can’t otherwise see variables that are defined outside

of them.

The CLEAR command is necessary to avoid appending the results of the current invocation of

BINOMIALSAMPLE to leftover results of previous invocations if the subroutine were to be

invoked more than once in the same program.

You’ll notice that I changed the limits on the UNIFORM command to be 0 and 1 instead of 0

and 100. That change makes it so you can use actual probability numbers instead of percentages

for the success probability.

Now you can create samples from a binomial distribution with one command:
4

BINOMIALSAMPLE 10 0.5 sample

This command produces a result that looks like this when sample is printed:

sample: (success success success failure success ... success failure)

If you want to see a histogram of this binomial distribution with success probability of 0.5, you

can generate a large number of trials like this:

COPY 10000 numberOfTrials

REPEAT numberOfTrials

 BINOMIALSAMPLE 10 0.5 sample '<== This line invokes the subroutine

 COUNT sample = success successCount

 SCORE successCount NumberOfSuccesses

END

HISTOGRAM binsize 0.1 percent NumberOfSuccesses

Here is the result of the above program:

4
The Statistics101 installation directory contains a folder called lib that contains this subroutine in a file called

“binomialCommands.txt”. There is another file in the same directory named “multinomialCommands.txt”. That file

provides commands (subroutines) that use this method to implement the general MULTINOMIAL distribution of

which the binomial distribution is a special case. You might find it instructive to examine those subroutines.

Solving Probability and Statistics Problems with Statistics101

30

If you now wanted to compute the probability of, say, exactly four successes out of the 10

samples, you could do it with this:

COUNT NumberOfSuccesses = 4 trialsWith4Successes

LET probability = trialsWith4Successes / numberOfTrials

PRINT probability

To get an answer of:

probability: 0.22

This last result can be computed mathematically without simulation by using the built-in

BINOMIALPROB command:

BINOMIALPROB 10 0.5 4 probability

PRINT probability

Yielding a more precise answer:

probability: 0.205078125

There is a lot more to learn about subroutines as you will see in the second part of this book, but

what we have just covered is sufficient for you to understand any of the other uses of subroutines

in this part.

Normal Distribution

In this section, we discuss the Normal distribution from the viewpoint of simulation and

Statistics101. You are probably familiar with the bell-shaped “normal” or “Gaussian” curve. The

normal distribution is a continuous distribution, which means, roughly, that its random variable

has an unlimited number of values. You have probably used tables to determine probabilities

from the normal curve. If so, you had to standardize your values using “z-scores” because one

table can only represent one pair of mean and standard deviation. Since Statistics101 is primarily

a simulation system, how can you use simulation to determine probabilities of ranges of events

on the normal curve? In Statistics101 the NORMAL command fills a vector with a chosen

Solving Probability and Statistics Problems with Statistics101

31

number of “random” numbers derived from a normal distribution with a given mean and

standard deviation. You can see this with the following two commands, the first of which

generates a large number of numbers drawn from a standardized (mean = 0, standard deviation =

1) normal distribution, and the second then creates a histogram of those numbers.

NORMAL 100000 0 1 samples

HISTOGRAM percent binsize 0.1 samples

The above two-line program outputs this histogram:

This should look familiar. Now, if you wanted to know what the probability is that a number

drawn from that standard distribution is within one standard deviation of the mean, here is all

you need to do (repeating the above two command lines for completeness):

COPY 100000 numberOfSamples

NORMAL numberOfSamples 0 1 samples

COUNT samples between -1 1 samplesInRange

LET probability = samplesInRange / numberOfSamples

PRINT probability

Which as expected produces the familiar probability,

probability: 0.68352

In Resampling Stats it is not necessary to use a standardized normal curve. If you know that your

mean is 100 and your standard deviation is 10, and you wanted to know what the probability is

of values from that distribution being between 75 and 90, here’s a program that will produce the

answer directly:

COPY 10000 numberOfSamples

NORMAL numberOfSamples 100 10 samples

COUNT samples between 75 90 samplesInRange

LET probability = samplesInRange / numberOfSamples

PRINT probability

This yielded the following answer:

probability: 0.1536

Solving Probability and Statistics Problems with Statistics101

32

If you wanted to know the probability that the values are in the lower tail up through 75, you

only need change the COUNT command to this:

COUNT samples <= 75 samplesInRange

Or to compute the probability that a number will be in the upper tail, say 90 and above, you

would change it to this:

COUNT samples >= 90 samplesInRange

Here is a subroutine to compute the probability that a normal random variable’s value will be in

a given range using the technique shown in the above examples.

NEWCMD NORMALPR_RANGE mean stdDev lowLimit highLimit prob

 COPY 10000 numberOfSamples

 NORMAL numberOfSamples mean stdDev samples

 COUNT samples between lowLimit highLimit samplesInRange

 LET prob = samplesInRange / numberOfSamples

END

This lets you perform the same computation as before, but using the subroutine, it takes only one

line, like this:

NORMALPR_RANGE 100 10 75 90 probability

PRINT probability

You can write the other two subroutines (suggested names, NORMALPR_LOWERTAIL and

NORMALPR_UPPERTAIL) using the different COUNT commands as an exercise
5
.

Sampling Distribution of a Statistic

Suppose that you take a random sample from a population and compute the sample’s mean. You

would expect, since the sample did not include every member of the population, that the mean

you calculated would differ from the population’s mean. If you repeatedly took additional

samples of the same size from the population and calculated their means, you would find that

some samples would have means that were below the population mean and some would have

means that were above it. If you then plotted all those sample means on a histogram, you would

have a graph that illustrates the “sampling distribution of the means” or just “distribution of the

means.” Here’s a program that performs those steps:

COPY 70 minValue 'lower limit of uniform distribution

COPY 130 maxValue 'upper limit of uniform distribution

COPY 10 sampleSize

COPY 10000 populationSize

COPY 10000 repeatCount

UNIFORM populationSize minValue maxValue populationData 'The original

population

REPEAT repeatCount

 SAMPLE sampleSize populationData sampleData 'One sample from original pop

 MEAN sampleData dataMean 'Mean of sample

 SCORE dataMean distributionOfMeans

END

HISTOGRAM percent binsize 1 populationData distributionOfMeans

5
You can use the built-in NORMALPROB command to precisely compute Normal probabilities.

Solving Probability and Statistics Problems with Statistics101

33

The program starts by creating a population that has a uniform distribution of values between 70

and 130, which makes the population mean 100. These numbers were chosen arbitrarily, just for

the sake of this example. Next, the program repeatedly takes samples of size 10 from that

population, computes the mean, and accumulates the means in the vector

distributionOfMeans. Finally, it displays a histogram like this one:

The gray bars are the histogram of the population. The red bars are the histogram of the means of

all the samples of size ten. You can see that the center of the distribution of the means is very

close to 100, as you would expect. You can also see that this distribution of the means looks

much like a normal distribution. In fact, it becomes more and more like a normal distribution as

the sample size is increased, per the Central Limit theorem.

The chart tells you that if you take a sample of ten from this population, the mean of the sample

can vary from about 81 to about 122. If you did not know the population’s mean and you took a

sample of 10 to estimate it, then you might get an estimate that is inaccurate by as much as 22

(I.e., 22 = 122 – 100). Most of the time the estimate will be much closer to the correct value, but

you would never know based on one sample of ten how far that sample’s mean was from the

correct value. I will discuss this issue further in the section Confidence Intervals.

You can use a similar process to generate the sampling distribution of any statistic, not just the

mean. An easy statistic to try is the median: just substitute MEDIAN for MEAN in the above

program and change the name of the scoring variable from distributionOfMeans (two places)

to distributionOfMedian or, to be more general, distributionOfStatistic. This method

(resampling) of generating the sampling distribution of a statistic can be used for a statistic of

any complexity, and is especially useful with statistics whose sampling distributions have no

closed mathematical or tabulated formulation.

You can experiment with the program by varying the sample size. You will find that a larger

sample will lead to a narrower distribution of the means. That is, the distribution of the means for

a larger sample will have a smaller standard deviation.

Here's a modification of the above program that will produce distributions for three different

sample sizes, using a subroutine. The program plots all three distributions on the same histogram

so you can visually compare the results.

Solving Probability and Statistics Problems with Statistics101

34

'Subroutine to compute a vector containing the means of 10000 samples

'of size sampleSize taken from the given population data.

NEWCMD MEANDISTRIBUTION populationData sampleSize distributionOfMeans

 LET repeatCount = 10000

 REPEAT repeatCount

 SAMPLE sampleSize populationData sampleData

 MEAN sampleData dataMean

 SCORE dataMean distributionOfMeans

 END

END

COPY 70 minValue 'lower limit of uniform distribution

COPY 130 maxValue 'upper limit of uniform distribution

COPY 10000 populationSize

UNIFORM populationSize minValue maxValue populationData 'The original

population

MEANDISTRIBUTION populationData 5 distribution05 'sample size = 5

MEANDISTRIBUTION populationData 20 distribution20 'sample size = 20

MEANDISTRIBUTION populationData 40 distribution40 'sample size = 40

HISTOGRAM percent binsize 1 populationData distribution05 \

 distribution20 distribution40

Here is the histogram resulting from one run of the above program. You can clearly see that a

larger sample size leads to a narrower distribution of the mean:

Knowing or simulating the sampling distribution of a statistic is what allows you to estimate

confidence intervals and to estimate probabilities for “hypothesis tests.” I will discuss confidence

intervals and hypothesis tests later in the sections with those names.

Statistics Examples

In statistics problems, you know the sample; you want to use your knowledge of the sample to

tell you something about the population. Typical examples from real life are the never-ending

political polls, or the television ratings measurements.

In the problems we have looked at so far, we had a well-defined population from which we took

random samples in a well-defined way, scoring the samples on whether they satisfied our success

criterion and averaging the results to get a probability. But what if all you had was a single

sample and you wanted to know something about the unknown population that it came from?

Solving Probability and Statistics Problems with Statistics101

35

What if someone presented you with a card deck and you drew two cards at random and found

that they were aces? Would you be able to conclude that the deck was “stacked” or that it might

not be a poker deck? What if you flipped a coin four times and came up with three heads. Could

you say that the coin is not fair?

It should be clear from a thoughtful consideration of the above questions that a sample doesn’t

necessarily give you any certainty about the nature of the population. The same sample could

have come from many different populations.

Would it be in error to conclude, for example, having thrown three heads out of four, one time,

that the coin is unbalanced? You saw above that even if the coin is fair, one-fourth of the time

you will throw three heads out of four. So you would have to reason something like this: “A 0.25

probability is really not very low, so the fact that I threw three out of four heads this time is not

too surprising, even if the coin is fair. Therefore, I cannot conclude that the coin is unfair. Of

course, I can’t conclude for certain that the coin is fair, either. In fact, I wouldn’t be surprised by

either possibility based on this sample and the associated probabilities. If I want more certainty, I

would need a bigger sample, one for which the probability of coming from a fair coin is either

very high or very low, depending on which premise (fair or unfair) I want to test. How big

should that sample be?”

The Sample versus the Population

The reason that any statistical sampling technique works is that a random sample of a population

shares characteristics with the population. Statistical techniques take advantage of those

similarities. Here are some examples that illustrate the similarities. First is a sample from a

uniform distribution:

UNIFORM 10000 70 130 uniformPopulation

SAMPLE 30 uniformPopulation sample

HISTOGRAM percent binsize 1 uniformPopulation sample

You can see that the histogram of the population (in gray) is evenly distributed, as a uniform

distribution should be, and the sample (in red) is also fairly evenly distributed over the

population as expected. There are a few sample bins that are higher than the others, but even

Solving Probability and Statistics Problems with Statistics101

36

those higher bins are fairly evenly distributed and would tend to balance out if you were to

calculate, say, a mean from the sample.

As another example, look at a beta distribution. The beta distribution, which is implemented as a

subroutine, is non-symmetrical:

INCLUDE "lib/BetaDistribution.txt"

BETA 10000 70 130 3 10 betaPopulation

SAMPLE 30 betaPopulation sample

HISTOGRAM percent binsize 1 betaPopulation sample

Again, you can see that the sample is distributed similarly to that of the original population.

Finally, for a normal distribution:

NORMAL 10000 100 10 normalPopulation

SAMPLE 30 normalPopulation sample

HISTOGRAM percent binsize 2 normalPopulation sample

Solving Probability and Statistics Problems with Statistics101

37

Once again, the random sample resembles shape of the population’s distribution. The

resemblance will never be perfect, and as you would expect, it will vary from sample to sample.

The larger the sample, the better it will resemble the population from which it is drawn.

Bias

A sample that is not random is called a biased sample. The above examples make clear that a

random sample is a fair representation of the population because each member of the population

has an equal chance of being selected. In any honest statistical study, much effort is spent on

ensuring that the sample will be unbiased. If it is impossible to obtain an unbiased sample, then

the study must discuss and explain the effect that the bias may have on the results, and the

limitations on the conclusions because of the bias. There are many sources of bias. Here are a

few common categories of bias.

Selection bias is the result of an improper method of choosing a sample. An Internet survey will

be inherently biased because the responders choose themselves and are most likely to be those

who are more strongly motivated one way or another about the subject than the population at

large.

Survivor bias is the result of sampling only the survivors of a population to represent the whole

population. For example, a study of the average performance of mutual fund companies over

time will usually exclude those mutual funds that went out of business during that time. This

biases the result to make it look like the overall performance was better than it actually was.

Reporting bias is the result of the fact that popular magazines and even scientific journals will

tend to report surprising or unexpected or only positive results. If twenty studies were done to

determine the effects of blueberries on skin cancer and 19 of the studies showed no

improvement, but one showed improvement, then it is very likely that the one anomalous study

will be published in the scientific press and hyped in the popular press, while the others will be

ignored. With the 5% level of significance that is used most frequently for studies, 1 out of 20

repetitions of a study will be anomalous just by chance. And that’s the one that will be published.

Data mining bias is the result of re-analyzing the data to find unanticipated correlations. For

example, analyzing a given set of stock market data for different patterns of price movement,

you might find that one particular pattern of price movement, if traded a certain way, gives

remarkable profits. But although the pattern might work for the given data, it would be naive

(and expensive) to believe that it will work on future movements.

Tip: A good book for the general reader, which discusses the pervasiveness of many kinds of

bias in published studies, is Wrong: Why experts keep failing us--and how to know when not to

trust them by David H. Freedman. The book has no mathematics and will open your eyes to the

weakness of many of the studies that are reported in the press and act as a warning for your own

statistical investigations.

The Bootstrap

The reason we take samples in the real world is because we want to know something about the

population even though we cannot survey the entire population because of cost, accessibility, or

some other reason. As we have just seen, a random sample is representative of the population, so

if the population is otherwise unknown, what would happen if we turn our logic around and say

that the sample is the population? That is, what if we replicate our sample millions of times to

http://www.amazon.com/gp/product/0316023787/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0316023787
http://www.amazon.com/gp/product/0316023787/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0316023787

Solving Probability and Statistics Problems with Statistics101

38

construct an artificial population from which we can draw new samples? Instead of drawing the

sample from the population, we would be drawing the population from the sample. This sounds

like getting something for nothing, like magic, or like lifting yourself by pulling on your

bootstraps. It’s no surprise therefore that this idea has been named “the bootstrap.”

A common use for the bootstrap is to compute the distribution of a statistic such as the mean.

This is done as follows. Starting with your randomly sampled data series, you repeatedly create a

new “bootstrap” sample of the same size as the original sample by randomly drawing values,

with replacement, from your original sample data. Sampling with replacement is equivalent to

sampling from an infinite number of copies of each member of the sample. For each of these new

bootstrap samples, you compute the desired statistic (such as mean, median, standard deviation,

or any other) and save it in a vector, which upon completion of the desired number of repetitions,

will contain an empirical estimate of the sampling distribution of that statistic.

To see how this works, suppose you took a sample from a population whose mean you wanted to

know and then used the bootstrap method to generate a distribution of the mean. The reason for

being interested in the distribution of the mean or the distribution of any other statistic is that the

distribution is needed to evaluate “hypothesis tests” and “confidence intervals.” These will be

discussed later. For this example, we’ll take a sample from a known population and pretend we

don’t know anything about the population.

UNIFORM 10000 70 130 unknownPopulation 'The "unknown" population

SAMPLE 30 unknownPopulation originalSample 'Take the sample

REPEAT 10000

 SAMPLE 20 originalSample bootstrapSample 'Resample to get bootstrap sample

 MEAN bootstrapSample bootstrapSampleMean 'Compute the desired statistic

 SCORE bootstrapSampleMean bootstrapDistribution 'Save statistic in vector

END

HISTOGRAM percent binsize 1 unknownPopulation bootstrapDistribution

Notice that the actual mean of the population is 100 but that the center of the bootstrap

distribution is slightly lower. That is because the distribution was generated from a single

original sample whose mean was not exactly that of the population. It would be rare that any

sample’s mean would be exactly the same as its population’s mean, but it would also be rare that

Solving Probability and Statistics Problems with Statistics101

39

it would be radically different. That is what the distribution of the means tells us: the variation

from the population’s mean that we might expect in a sample’s mean.

The traditional way to generate the distribution of means is to calculate the mean and standard

deviation of the sample, use those as characterizing a normal curve that is then taken as the

population. Then, the mathematical properties of the normal curve are used to derive the

distribution of the means.

The next program will compare the results of the bootstrap method and the traditional, or

“parametric” method:

sampleSize = 20

UNIFORM 10000 70 130 population 'The "unknown" population

SAMPLE 30 population originalSample 'Take the sample

MEAN originalSample originalMean 'Find the sample's mean

STDEV originalSample originalStdDev 'Find its standard deviation

'Create a normal population from the sample's mean and Std Dev:

NORMAL 10000 originalMean originalStdDev parametricPopulation

'Take samples from both populations and save all the means

REPEAT 10000

 SAMPLE sampleSize originalSample bootstrapSample

 MEAN bootstrapSample bootstrapSampleMean

 SCORE bootstrapSampleMean bootstrapDistribution

 SAMPLE sampleSize parametricPopulation parametricSample

 MEAN parametricSample parametricSampleMean

 SCORE parametricSampleMean parametricDistribution

END

HISTOGRAM percent binsize 1 population bootstrapDistribution \

 parametricDistribution

You can see that the two methods give very similar results. Note also that the two methods differ

only in the way the artificial population was generated. The parametric method used the mean

and standard deviation of the sample to generate a population based on a normal distribution and

then sampled that population to generate the distribution of means. The assumption of a normal

distribution is false in this case, but as you can see, it didn’t make much difference. The

Solving Probability and Statistics Problems with Statistics101

40

bootstrap method used the actual data of the sample to generate the population, without making

any assumptions as to the shape of the population’s distribution. The parametric method would

normally not be completed by simulation as shown here. Instead, further mathematical steps

would be taken, such as using Student’s t distribution method with tables.

Since you will most often use bootstrapping to generate the distribution of means, here’s a

subroutine that will do the work. This subroutine is included in the library file

“lib/bootstrapCommands.txt” along with two others that resample the median and the standard

deviation to obtain their respective sampling distributions. You can see an example usage of

BOOTSTRAPMEAN in the next section.

' BOOTSTRAPMEAN resamples a vector containing sample data

' computing the mean a given number of times to produce a

' distribution of the means.

' Inputs:

' sampleData: the random sample taken from the population.

' numberOfMeans: the number of resampled means to be computed.

' Output:

' distributionOfMeans: vector containing all the means that were

' calculated from resamples of the sampleData vector.

NEWCMD BOOTSTRAPMEAN sampleData numberOfMeans distributionOfMeans

 CLEAR distributionOfMeans

 SIZE sampleData sampleSize

 REPEAT numberOfMeans

 SAMPLE sampleSize sampleData bootSample

 MEAN bootSample bootSampleMean

 SCORE bootSampleMean distributionOfMeans

 END

END

However strange “bootstrapping” may sound, it is conceptually little different from computing a

mean and a standard deviation from a sample and using those to draw conclusions about an

otherwise unknown population. Both are characterizing the unknown population based on the

sample. One important difference is that bootstrapping from a sample does not assume that the

population is normal, which the parametric approach does.

Question for discussion:

A sampling distribution of the means generated by bootstrap from a sample has the limitation

that the lowest possible value of the mean is equal to the lowest value of the sample and the

highest value of the mean is equal to the highest value in the sample. By contrast, the ideal

distribution of means is a normal distribution that has plus and minus infinity as its extremes. Is

this difference a practical problem with the bootstrap method?

Next, we’ll show how to use the bootstrap to determine confidence intervals and following that,

how to use it to perform hypothesis tests. A confidence interval is used to answer a question

about the accuracy of a parameter of the population based upon sample evidence. A hypothesis

test is used to discover how likely or unlikely it is for a particular sample to have come by

chance from a particular population.
6

6
 After Simon, Resampling: The New Statistics, page 298.

Solving Probability and Statistics Problems with Statistics101

41

Confidence Intervals

Given a population and a sample size, the distribution of the mean describes the probability that

a sample mean will be a certain distance from the population mean. A confidence interval goes

in the reverse direction: given a sample, it estimates the probability that the mean (or any other

chosen parameter) of the unknown population from which the sample came will be within a

certain distance from the sample’s mean (or other statistic).

As mentioned earlier, when you take a sample, the sample’s mean will at best be an

approximation of the population’s mean. If you were unlucky, your sample’s mean might be

quite a bit off the population’s mean. So you want to find the distribution of the means to get an

idea as to how far off your estimate might be. Let’s demonstrate what happens when you are

unlucky, that is, you happened unknowingly to get a sample that is quite far from the population

mean. The next program starts off with a sample that was taken from a uniform distribution of

integers between 70 and 130. The sample’s mean is 89.7, which is far off the population mean of

100.

COPY 70,130 unknownPopulation

DATA (87.0 104.0 76.0 97.0 127.0 81.0 74.0 81.0 82.0 88.0) sampleData

MEAN sampleData sampleDataMean

PRINT sampleDataMean

BOOTSTRAPMEAN sampleData 10000 distributionOfMeans

HISTOGRAM percent binsize 1 unknownPopulation distributionOfMeans

The program uses the BOOTSTRAPMEAN subroutine given earlier to determine the

distribution of means. You can see in the following histogram that the distribution is centered

around 90 and that the original population is centered on 100. Since the mean of a sample will

only rarely be exactly equal to that of the population, we would like to have some way of

measuring how far off our estimate of the population mean might be. That measure is the

confidence interval.

A sample mean is as likely to be above the population mean as it is to be below it. We want to

define an interval around our sample mean that we can be sure would include the population

mean. A typical probability used to define a confidence interval is 0.95 or 95%. Therefore, in this

example, we need to find the upper and lower values along the X axis between which would be

Solving Probability and Statistics Problems with Statistics101

42

found 95 percent of the sample means, which is the same as 95 percent of the area of the

distribution, centered on the sample mean. Rather than using tables, we can use the

PERCENTILE command to find those upper and lower limits. We want the interval to enclose

the middle 95 percent. That leaves 5 percent for the upper and lower excluded portions of the

distribution. Dividing that in half gives 2.5 percent for each excluded portion. Therefore, we’ll

ask for the 2.5th and the 97.5th (i.e., 100 - 2.5) percentiles:

PERCENTILE distributionOfMeans (2.5 97.5) confidenceInterval

PRINT confidenceInterval

With the result being:

confidenceInterval: (81.3 100.1)

That means that “we estimate that there’s a 95% chance that the population’s mean will be found

between 81.3 and 100.1.” You can see that in this extreme case, we just barely made it.

This next example is taken from Statistics the Easy Way by Douglas Downing and Jeffrey Clark,

page188: Randomly select 20 counties in the United States and record their populations. Use that

sample to estimate, within a 95% confidence interval, the mean population for all counties in the

US. Here, a 95% confidence interval would be the range of county populations that would have a

0.95 probability of containing the mean value for the whole U.S. Don’t confuse the two

meanings of “population” here. One is the count of people in a county and the other is the

statistical population, which in this case is the set of counties.

Leaving out the county names, here are the populations of 20 counties randomly selected from

the 1990 census (the mean of these numbers is 68,791):

30083 152585 50917 300836

98928 6179 93145 32273

460 16754 26147 14194

11355 76779 7129 7021

32343 352910 51150 14632

Here’s a Resampling Stats program that uses the bootstrap technique to answer the question. You

can cut and paste this into Statistics101 and run it. I used the DATA command, which is a

synonym for the COPY command, to emphasize that the countySample vector is the program’s

input data. I could have used the BOOTSTRAPMEAN subroutine to do the work that is being

done in the REPEAT loop, but I chose not to so that all the details of the process would be

visible.

DATA (30083 152585 50917 300836 98928 6179 93145 \

 32273 460 16754 26147 14194 11355 76779 7129 7021 \

 32343 352910 51150 14632) countySample

REPEAT 10000

 SAMPLE 20 countySample newSample

 MEAN newSample newSampleMean

 SCORE newSampleMean means

END

HISTOGRAM percent binsize 5000 means

PERCENTILE means (2.5 97.5) confidenceInterval

PRINT confidenceInterval

The program repeatedly takes 20 random samples, with replacement, from the initial bootstrap

sample, computes the mean, and saves the mean in a vector. After the final pass through the

Solving Probability and Statistics Problems with Statistics101

43

loop, the vector means contains the 10000 means from the 10000 samples of 20 values from the

bootstrap sample countySample. That vector comprises the distribution of the sample means,

which is made visible by the HISTOGRAM command, and looks like this.

There is a lot of variation among these means and somewhere in the range of that variation is the

mean of the unknown population. The program computes the values for the 2.5
th

 percentile and

the 97.5
th

 percentile. That is the range within which one can expect, with a 95% probability, to

find the mean of the population from which the sample was drawn.

Here are the results of two runs of the program (without the histograms):

confidenceInterval: (32255.85 115508.85)

confidenceInterval: (32108.375 114477.125)

The interval that Downing and Clark computed using the t-distribution technique was (23505.8

114076.2). The bootstrap answer gave a slightly narrower interval. The total number of counties

and the total population of the US are known, so you can actually calculate the mean population

for the counties. For the census from which the data were taken there were 248,709,873 people

divided by 3,135 counties (including independent cities). Therefore the mean is 79,333.

Downing and Clark go on to say, “The main difficulty here is that the distribution of county

populations does not follow a normal distribution. There are a few very large counties that raise

the overall population average, but there is a very good chance that none of the large counties

will appear in a [random] sample of this size. A larger sample would make the distribution of the

sample average be closer to a normal distribution (according to the central limit theorem) and it

would allow you to obtain a narrower confidence interval.” Since the bootstrap approach makes

no assumption of normality but the t-distribution method does, it is not surprising that there is

some difference between the two answers.

Here is another example of computing confidence intervals. A poll was taken before an election

in which three politicians were competing. The sample size was 400. The result was that 10

percent of those polled favored politician A, 40 percent favored politician B, and the rest favored

politician C. What are the 95 percent confidence intervals for the results for each politician?

For the solution to this, you would construct a population that has the stated percentages of

partisans for each politician, and then repeatedly take 400 samples from that population while

recording the percentages that appear in each sample. This process will estimate the sampling

distribution of the statistic of interest, the percentage support for each politician. You would then

Solving Probability and Statistics Problems with Statistics101

44

analyze the sampling distributions to find the confidence intervals. The following program will

solve the problem.

ENUM polA polB polC

'Construct a population model based on the sample results:

COPY 10#polA 40#polB 50#PolC population

COPY 10000 repeatCount

COPY 400 sampleSize

REPEAT repeatCount

 SAMPLE sampleSize population sample

 COUNT sample = polA polACount

 COUNT sample = polB polBCount

 COUNT sample = polC polCCount

 polAPercent = polACount / sampleSize * 100

 polBPercent = polBCount / sampleSize * 100

 polCPercent = polCCount / sampleSize * 100

 SCORE polAPercent polAScore

 SCORE polBPercent polBScore

 SCORE polCPercent polCScore

END

PERCENTILE polAScore (2.5 97.5) polAConfidence

PERCENTILE polBScore (2.5 97.5) polBConfidence

PERCENTILE polCScore (2.5 97.5) polCConfidence

HISTOGRAM percent binsize 1 "" "Percent support" polAScore polBScore \

 polCScore

PRINT sampleSize polAConfidence polBConfidence polCConfidence

Running this produced the following confidence intervals...

polAConfidence: (7.25 13.0)

polBConfidence: (35.375 45.0)

polCConfidence: (45.25 54.75)

...and the following histogram:

Question for discussion:

Note the interesting fact that the confidence interval for the politician with the lowest following

is narrower than the others. Why is that the case?

Read http://www.resample.com/content/text/26-Chap-22.pdf for an explanation.

http://www.resample.com/content/text/26-Chap-22.pdf

Solving Probability and Statistics Problems with Statistics101

45

Summarizing, the way to find a confidence interval given a set of sample data is to re-sample the

original sample data, with replacement, as if it were the population. Your resampling sample size

should be the same size as the original sample. Next, compute the measurement (the “statistic”)

you are interested in from the new sample. In the previous examples, the measurement was the

mean or a percentage, but it can be any measurement that is appropriate to the problem you are

analyzing. Then record the measurement in a scoring vector using the SCORE command. Repeat

the resampling, the measurement, and the recording of the measurement some large number of

times. Finally, use the PERCENTILE command to determine the limits of your confidence

interval.

Hypothesis Testing

In hypothesis testing, you take a question like “is the coin fair?” and consider the possible

“universes” from which the coin might have come. A coin can be unfair in many ways, but fair

in only one. So you could guess that the coin has unfair odds of 3:2 or 3:4, etc, and choose one of

those as a “benchmark” or “null” hypothesis to test whether our sample could have come from it.

But there is no particular reason to choose one over another of these. And if you did choose one

of them, say 3:2, and concluded that our sample had a very low probability of coming from that

universe, you still haven’t answered the question of whether the coin is fair. You want to choose

a unique universe in which membership or non-membership of our sample will answer the

fairness question. By “membership,” I mean that there is a high probability that the sample could

have come from the chosen universe; by “non-membership” I mean there is a very low

probability that the sample could have come from the universe. The question of fairness can be

most easily determined by choosing a “fair,” 1:1, universe as our benchmark or “null” hypothesis

and seeing whether our sample is likely to have come from such a universe. If not, then you

know the coin is unfair, you just don’t know by how much. If yes, you can say that the coin is

probably fair.

The above reasoning is an informal example of the idea of “hypothesis testing.” More formally,

the process of hypothesis testing follows this pattern:

Choose a “research hypothesis” that states the expectation that you want to test. (e.g., “The coin

is unfair.”) This is essentially the hypothesis that the sample came from such-and-such a universe

(in this case an unspecified “unfair” universe).

Derive the “null hypothesis” or “benchmark hypothesis,” which is the one you will actually test.

The null hypothesis is derived from the research hypothesis by negation. (e.g., “The coin is

fair.”)

Decide on a probability or a range of probabilities outside which you will consider the null

hypothesis to be rejected. (e.g., “95 percent probability”).

Test the null hypothesis using appropriate means. This test is the calculation of the probability

that the sample could have come from the universe of the null hypothesis based on some statistic.

The statistic used should be chosen carefully. Common statistics are the sample mean, the

variance, the sum of squared deviations, and so forth. Each statistic has a probability distribution

called its sampling distribution. You find where your sample falls on that distribution to calculate

the probability that the sample satisfies the null hypothesis. Traditionally, you would select a

formula or a table to obtain the answer. Which formula, which table to use? That might not be

Solving Probability and Statistics Problems with Statistics101

46

evident in a particular case, especially to a beginner. In this paper, we don’t use formulas and

tables. We use the resampling method to solve all the problems we encounter.

If the probability that the sample could have come from the null hypothesis universe is outside

the pre-determined region of acceptance, you would conclude that the null hypothesis is rejected.

If the null hypothesis is rejected, you can say that the research hypothesis is “supported” (you

can’t say it is “true,” or “confirmed”). What you could say in truth is that “if the research

hypothesis turns out to be true, you won’t be surprised.”

If the sample could have come from the benchmark universe, based on your range of acceptance,

then the null hypothesis is not rejected and the research hypothesis is rejected.

The hypothesis test resembles a proof by contradiction. You make an assumption, the null

hypothesis (“the sample came from a fair coin”), trace it to its conclusion (“after a large number

of trials a sample similar to our original sample occurred only X percent of the time, which is

very low”) and find that the conclusion contradicts the assumption, therefore you reject the

assumption. Since the research hypothesis was the opposite of the assumption you rejected, you

consider the research hypothesis to have been supported. The hypothesis test is really not a

proof, however. It is more a plausibility argument that the research hypothesis is valid.

Let’s return to our example of the unfair coin. Say that you flipped the coin ten times and got

seven heads. Is the coin fair? Your research hypothesis is that the coin is unfair. Therefore, the

null hypothesis, which is the opposite of the research hypothesis, and which you are hoping to

contradict, is that the coin is fair. You then choose a probability criterion which you consider so

low that if the computed probability were equal to or less than the criterion then it would be

reasonable to say that the sample could not have come from the benchmark universe. Say you

choose 0.05. Then you would determine the probability of seven heads out of ten throws from

that universe and compare it to your criterion. Here is a Resampling Stats program to perform

that calculation.

ENUM heads tails

COPY (heads tails) coin

COPY 10000 numberOfTrials

REPEAT numberOfTrials

 SAMPLE 10 coin tenFlips

 COUNT tenFlips = heads headCount

 SCORE headCount result

END

COUNT result = 7 successes

LET probability = successes / numberOfTrials

PRINT probability

The result comes in around 0.12. Since this is greater than your criterion of 0.05, you must

conclude that seven heads out of ten is not sufficiently unusual for a fair coin, so you cannot

reject the null hypothesis.

Here is another example of hypothesis testing, this one taken from CliffsQuickReview Statistics

p. 80, example 5: “A professor wants to know if her introductory statistics class has a good grasp

of basic math. Six students are chosen at random from the class and given a math proficiency

test. The professor wants the class to be able to score at least 70 on the test. The six students get

scores of 62 92 75 68 83 95. Can the professor be at least 90 percent certain that the mean score

for the class on the test would be at least 70?” The null hypothesis would therefore be: mean

Solving Probability and Statistics Problems with Statistics101

47

score < 70. The book solves the problem using the t distribution. Instead, we solve it using the

bootstrap:

DATA (62 92 75 68 83 95) scores

COPY 10000 numTrials

COPY 0 successCount 'Establish a counter

REPEAT numTrials

 SAMPLE 6 scores sample 'Take a bootstrap sample

 MEAN sample sampleMean 'Compute the desired statistic

 IF sampleMean < 70 'Count it if it satisfies null hypothesis

 successCount = successCount + 1

 END

END

LET probability = successCount / numTrials 'Compute probability of success

PRINT probability

The result of running this was

probability: 0.0304

That number is the probability of the null hypothesis, which is less than 10 percent. Therefore,

the professor can be at least 90 percent certain that the class score would be at least 70.

Here’s a more complicated example using resampling to perform a hypothesis test. The example

is taken from Statistics the Easy Way by Douglas Downing and Jeffrey Clark, (Chapter 18

exercise 5, page 223). Suppose four new pesticides are being tested in a laboratory, with the

results shown in the following table, called a contingency table. Is pesticide 1 significantly better

than the rest?

 Type 1 Type 2 Type 3 Type 4 Total

Insects killed 139 100 73 98 410

Insects

surviving
15 50 80 47 192

Total tested 154 150 153 145 602

Following the six steps listed earlier, you decide that your research hypothesis is that “type 1 is

significantly better than the rest.” The null or benchmark hypothesis to be tested is that “type 1 is

no better than the rest.” Translating that to a statistical statement, you get, “The results of the

type 1 pesticide come from the same population as those for the other pesticides.” You choose

the 5% level of significance for traditional reasons. Now, you need to decide on a statistic to use

to compare different test results with one another. (This would normally be done with the chi-

square test, which can also be done in Statistics101 as will be demonstrated later. But just to

show that the chi-square statistic is not the only alternative, I’ll use a simpler one first.) One test

that comes immediately to mind is to compare the ratio of survivors to total tested (in each

sample) for the best and the worst pesticide. Using the ratios removes the influence of differing

sample sizes, although here the samples are all very close to the same size. So the test becomes

“what is the probability that the best and worst of four groups randomly selected from the

benchmark population would by chance have a survival rate that differs by (47/145 - 15/154 =

0.227) or more?” Next, you need to define the benchmark population. The benchmark is that

Solving Probability and Statistics Problems with Statistics101

48

“out of 602 tested, 192 survived.” So you define the benchmark population as consisting of 192

survivors and 410 fatalities.

Here’s the simulation:

COPY 0.227 testRatioDifference

COPY 1000 numberOfTrials

ENUM died survived

DATA 410#died 192#survived nullPopulation

REPEAT numberOfTrials

 SAMPLE 154 nullPopulation type1

 SAMPLE 150 nullPopulation type2

 SAMPLE 153 nullPopulation type3

 SAMPLE 145 nullPopulation type4

 COUNT type1 =survived type1SurvivorCount

 COUNT type2 =survived type2SurvivorCount

 COUNT type3 =survived type3SurvivorCount

 COUNT type4 =survived type4SurvivorCount

 LET ratio1 = type1SurvivorCount / 154

 LET ratio2 = type2SurvivorCount / 150

 LET ratio3 = type3SurvivorCount / 153

 LET ratio4 = type4SurvivorCount / 145

 'Combine the ratios for easy comparison:

 COPY ratio1 ratio2 ratio3 ratio4 ratios

 MIN ratios minRatio

 MAX ratios maxRatio

 LET ratioDifference = maxRatio - minRatio

 SCORE ratioDifference distributionOfRatioDifference

END 'Show the sampling distribution:

HISTOGRAM binsize 0.01 distributionOfRatioDifference

COUNT distributionOfRatioDifference >= testRatioDifference successCount

LET probability = successCount / numberOfTrials

PRINT probability

The result of this simulation is:

probability: 0.0

Out of 1000 trials from the null population there were no cases as extreme as the observed

difference between ratios. Since that is well below our critical value (0.05), you can reject the

null hypothesis.

For comparison, the next program analyzes the same data using the chi-square technique. To use

the chi-square method, you first must calculate the expected values for each cell in the data table

based on the null universe. You do that by multiplying the cell’s column’s total by its row’s total

divided by the grand total. For example, the first cell’s expected value would be 154 * 410 / 602

= 104.88. You do that for each cell as you can see in the next table, which is the same as the

previous table except that the predicted frequencies are shown in parentheses.

Solving Probability and Statistics Problems with Statistics101

49

Type 1 Type 2 Type 3 Type 4 Total

Insects

killed

139

(104.88)

100

(102.16)

73

(104.20)

98

(98.75)
410

Insects

surviving

15

(49.12)

50

(47.84)

80

(48.80)

47

(46.25)
192

Total tested 154 150 153 145 602

In the program, you copy them into a predictedFrequencies vector in the same order as that

for the observed values. You can see the predictedFrequencies vector in the program’s first

line.

DATA (104.88 102.16 104.20 98.75 49.12 47.84 48.80 46.25) \

predictedFrequencies

DATA (139 100 73 98 15 50 80 47) observedValues

CHISQUARE observedValues predictedFrequencies observedChiSquare

PRINT observedChiSquare

COPY 10000 numberOfTrials

ENUM died survived

COPY 410#died 192#survived nullPopulation

REPEAT numberOfTrials

 SAMPLE 154 nullPopulation type1

 SAMPLE 150 nullPopulation type2

 SAMPLE 153 nullPopulation type3

 SAMPLE 145 nullPopulation type4

 COUNT type1 =died type1DeathCount

 COUNT type2 =died type2DeathCount

 COUNT type3 =died type3DeathCount

 COUNT type4 =died type4DeathCount

 COUNT type1 =survived type1SurvivorCount

 COUNT type2 =survived type2SurvivorCount

 COUNT type3 =survived type3SurvivorCount

 COUNT type4 =survived type4SurvivorCount

 COPY type1DeathCount type2DeathCount type3DeathCount \

 type4DeathCount deathCounts

 COPY type1SurvivorCount type2SurvivorCount type3SurvivorCount \

 type4SurvivorCount survivorCounts

 COPY deathCounts survivorCounts observedSampleValues

 CHISQUARE observedSampleValues predictedFrequencies chiSquareStatValue

 SCORE chiSquareStatValue chiSquareDistribution

END

'Show the chi-square distribution:

HISTOGRAM binsize 0.5 chiSquareDistribution

COUNT chiSquareDistribution >= observedChiSquare successCount

LET probability = successCount / numberOfTrials

Solving Probability and Statistics Problems with Statistics101

50

PRINT probability

OUTPUT "Null hypothesis is "

IF probability >= 0.05

 OUTPUT "NOT "

END

OUTPUT "rejected at the 5% significance level.\n"

Note that I added OUTPUT commands and an IF command at the end of the program so that it

would automatically print the conclusion: acceptance or rejection of the null hypothesis. Here is

the result from the above program:

observedChiSquare: 64.25130843346504

probability: 0.0

Null hypothesis is rejected.

We have achieved the same answer in both analyses. Granted, the first method, comparing the

difference of ratios, is probably not as sensitive (“powerful”) as the chi-square method since it

uses only two of the four groups (the ones with the max and the min ratios) whereas the chi-

square method uses all four to arrive at its conclusion. Further, notice that I didn't have to use an

F-distribution table, nor did I have to worry about how many "degrees of freedom" were

involved. That's because our results vector "automatically" contained the data that constituted the

sampling distribution appropriate to our sample. You can see the distribution by looking in the

histogram produced by the HISTOGRAM command.

Although the program I have written solves the problem, I can use it as one more opportunity to

demonstrate the use of subroutines. Studying the program reveals that several commands

(SAMPLE and COUNT) are repeated together with different arguments. That is a sign that

perhaps they can be made into a subroutine. Here (next page) is the same program rewritten

using a subroutine.

ENUM died survived

GLOBAL died survived nullPopulation

NEWCMD COLUMN_TRIAL sampleSize deathCount survivorCount

 SAMPLE sampleSize nullPopulation columnSample

 COUNT columnSample =died deathCount

 COUNT columnSample =survived survivorCount

END

DATA (104.88 102.16 104.20 98.75 49.12 47.84 48.80 46.25) \

 predictedFrequencies

DATA (139 100 73 98 15 50 80 47) observedValues

CHISQUARE observedValues predictedFrequencies observedChiSquare

PRINT observedChiSquare

COPY 1000 numberOfTrials

COPY 410#died 192#survived nullPopulation

REPEAT numberOfTrials

 COLUMN_TRIAL 154 type1DeathCount type1SurvivorCount

 COLUMN_TRIAL 150 type2DeathCount type2SurvivorCount

 COLUMN_TRIAL 153 type3DeathCount type3SurvivorCount

 COLUMN_TRIAL 145 type4DeathCount type4SurvivorCount

 COPY type1DeathCount type2DeathCount type3DeathCount \

 type4DeathCount deathCounts

 COPY type1SurvivorCount type2SurvivorCount type3SurvivorCount \

 type4SurvivorCount survivorCounts

Solving Probability and Statistics Problems with Statistics101

51

 COPY deathCounts survivorCounts observedSampleValues

 CHISQUARE observedSampleValues predictedFrequencies chiSquareStatValue

 SCORE chiSquareStatValue chiSquareDistribution

END

HISTOGRAM binsize 0.5 chiSquareDistribution 'Show the chi-square distribution

COUNT chiSquareDistribution >= observedChiSquare successCount

LET probability = successCount / numberOfTrials

PRINT probability

OUTPUT "Null hypothesis is "

IF probability >= 0.05

 OUTPUT "NOT "

END

OUTPUT "rejected at the 5% significance level.\n"

Tip: There is a set of subroutines in the “/lib” directory that will perform a chi-square analysis by

resampling for problems involving contingency tables of any size. They are in the file

ChiSquareGeneral.txt.

More Examples

You can find many other examples using Resampling Stats and Statistics101 to solve a wide

variety of common and uncommon problems in the folder “ResamplingPrograms” that is

included with the Statistics101 program by the installer. Further examples can be found at

http://www.statistics101.net/PeterBruce_05-illus.pdf. Julian Simon’s online text book at

http://www.resample.com/intro-text-online/ gives a lengthy discussion of hypothesis testing and

confidence intervals from the viewpoint of resampling. See especially, chapters 15 through 21.

The following examples are on the Statistics101 website. Click on any one of them to open that

example in your browser.

Probability Examples:

1. Flipping three coins

2. Drawing two aces at random

3. One spade or one club

4. At least one head in two coin flips

5. Drawing either a spade or an ace from a deck of cards

6. Exactly five heads out of ten

7. Mean and standard deviation for 10 flips of a fair coin

8. Standard error of the mean

9. Area under normal curve

10. Percentile

11. Sixty boys out of next 100 births

Statistics Examples:

12. Confidence interval (SD known)

13. Confidence interval (SD known)

14. Hypothesis test 1 (SD known)

15. Hypothesis test 2 (SD known)

16. Confidence interval (SD known)

17. Hypothesis test (SD unknown. t distribution one tail)

18. Hypothesis test (SD unknown. t distribution two tail)

http://www.statistics101.net/PeterBruce_05-illus.pdf
http://www.resample.com/intro-text-online/
http://www.statistics101.net/statistics101web_000007.htm
http://www.statistics101.net/statistics101web_000007.htm
http://www.statistics101.net/statistics101web_000007.htm#an0
http://www.statistics101.net/statistics101web_000007.htm#an1
http://www.statistics101.net/statistics101web_000007.htm#an2
http://www.statistics101.net/statistics101web_000007.htm#an3
http://www.statistics101.net/statistics101web_000007.htm#an4
http://www.statistics101.net/statistics101web_000007.htm#an5
http://www.statistics101.net/statistics101web_000007.htm#an6
http://www.statistics101.net/statistics101web_000007.htm#an7
http://www.statistics101.net/statistics101web_000007.htm#an8
http://www.statistics101.net/statistics101web_000007.htm#an9
http://www.statistics101.net/statistics101web_000007.htm#an10
http://www.statistics101.net/statistics101web_000007.htm#an11
http://www.statistics101.net/statistics101web_000007.htm#an12
http://www.statistics101.net/statistics101web_000007.htm#an13
http://www.statistics101.net/statistics101web_000007.htm#an14
http://www.statistics101.net/statistics101web_000007.htm#an15
http://www.statistics101.net/statistics101web_000007.htm#an16
http://www.statistics101.net/statistics101web_000007.htm#an17

Solving Probability and Statistics Problems with Statistics101

52

19. Confidence interval for population mean using t

20. Two-sample z-test for comparing two means

21. Two-sample t-test for comparing two means (hypothesis test)

22. Two-sample t-test for comparing two means (confidence interval)

23. Pooled Variance method

24. Paired difference t-test

25. Test for a single population proportion (hypothesis test)

26. Test for a single population proportion (confidence interval)

27. Choosing a sample size for a given confidence interval

28. Comparing two proportions (hypothesis test)

29. Comparing two proportions (confidence interval)

30. Correlation Coefficient

31. Finding significance of the Correlation Coefficient

32. Confidence interval for the Correlation Coefficient

33. Simple Linear Regression

34. Confidence interval for the linear regression slope

35. Confidence interval for the prediction

36. Chi-square test

http://www.statistics101.net/statistics101web_000007.htm#an19
http://www.statistics101.net/statistics101web_000007.htm#an20
http://www.statistics101.net/statistics101web_000007.htm#an21
http://www.statistics101.net/statistics101web_000007.htm#an22
http://www.statistics101.net/statistics101web_000007.htm#an23
http://www.statistics101.net/statistics101web_000007.htm#an24
http://www.statistics101.net/statistics101web_000007.htm#an25
http://www.statistics101.net/statistics101web_000007.htm#an26
http://www.statistics101.net/statistics101web_000007.htm#an27
http://www.statistics101.net/statistics101web_000007.htm#an28
http://www.statistics101.net/statistics101web_000007.htm#an29
http://www.statistics101.net/statistics101web_000007.htm#an30
http://www.statistics101.net/statistics101web_000007.htm#an31
http://www.statistics101.net/statistics101web_000007.htm#an32
http://www.statistics101.net/statistics101web_000007.htm#an33
http://www.statistics101.net/statistics101web_000007.htm#an34
http://www.statistics101.net/statistics101web_000007.htm#an35
http://www.statistics101.net/statistics101web_000007.htm#an36

Language Basics

53

PART 2: Language Basics

In this section you will learn the fundamental concepts and commands of the extended

Resampling Stats language. You will use these commands to create your own simulation

programs. You may find that you need commands and features that are not described in this

document. Since this is an introductory tutorial it does not cover all the capabilities of

Resampling Stats and Statistics101. Therefore if you need something not described here, browse

Appendix 2 or Statistics101 program’s help. It is very likely that what you need is already in the

language as either a command or a subroutine. If you can’t find what you want, feel free to post a

question on the www.Statistics101.net web forum or contact me directly by email at

john@statistics101.net.

Data Types

In the Resampling Stats language most data is in the form of lists of numbers. These lists are also

called vectors or sometimes, arrays. (I will use the words list and vector interchangeably, with

preference for the word vector). Each number in a vector is called an element of the vector. If a

vector has a name it is called a variable. If a vector does not have a name, it is called a constant.

If a vector has only one element, the vector may be called a number. Actually, the word number

is used ambiguously in Resampling Stats. I’ve already used it two different ways in the preceding

sentences. Sometimes it means a vector with only one element; sometimes it refers to the first

element of a vector with multiple elements, and sometimes it just means a number in the sense

that you are used to using it. The context should make clear which meaning is intended.

Although data can always be represented as numbers, often it is useful to use names instead of

numbers as elements in the data. Named Constants are discussed later in this tutorial.

Numbers

Here are the rules for entering literal numbers in Resampling Stats. If a number you are entering

is an integer, such as “5,” you can just type it as “5” (without the quotes). If it is negative you

type it as usual: “-5”. It is never correct to use a plus sign with a number in Resampling Stats. For

example, “+5” would cause an error message. If a number you are entering has a decimal point it

MUST have at least one digit before the point, like this: “0.123” or “12.345”. You can use

scientific notation as in this example, “1.234E5”, which stands for 123400.0. You can use a

minus sign in the exponent and/or the mantissa, as in “-1.234E-5”, but again, no plus signs.

Vectors (Lists)

Using vectors as the primary data type allows the handling of large collections of data as if they

were a single entity. There are several different ways that you can write a vector in Statistics101.

The most basic way of writing a vector is as a set of numbers separated by one or more spaces

and enclosed between parentheses. A simple example of a vector is (1 2 3 4 5).

This next table shows the different ways you can represent vectors in Resampling Stats.

mailto:john@statistics101.net

Language Basics

54

Specification

Name Pattern Example Meaning of Example

Empty vector () () ()

Number (n) or n (3) or 3 (3)

Vector (n1 n2 n3…) (1 3 6 2.5 9) (1.0 3.0 6.0 2.5 9.0)

Sequence n1,n2 1,5 or (1.0 2.0 3.0 4.0 5.0)

(two terms) 5,1 (1.0 2.0 3.0 4.0 5.0)

 jan,apr (jan feb mar apr) See Named Constants

Sequence n1,n2,n3 2,10,2 (2 4 6 8 10)

(three terms) 2,1,0.1 (2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0)

 jan,dec,3 Illegal: step not allowed in name sequences
1

Multiple n1#n2 or 5#3 (3.0 3.0 3.0 3.0 3.0)

 n1#vec 2#(1 2 3) (1.0 2.0 3.0 1.0 2.0 3.0)

Multiple n1#n2,n3,n4 2#3,5 (3.0 4.0 5.0 3.0 4.0 5.0)

Sequence 2#2,6,2 (2.0 4.0 6.0 2.0 4.0 6.0)

The first column, “Specification Name,” gives the name of each way of creating a vector. The

“Pattern” column, where “n,” “n1,” “n2,” etc. represent numbers and “vec” represents a vector,

shows different generic ways to write a vector in Resampling Stats. The “Example” column

gives specific numerical examples of each pattern. The "Meaning of Example" column shows the

full vector that is represented by the example.

The first row of the table shows an empty vector. Note that an empty vector is not the same as a

vector whose sole element is zero. An empty vector has no elements.

The second row shows a “number,” which is a vector with only one element. A number can be

written with or without parentheses. This is a special case for convenience and for conformity to

usual practice of writing numbers. Statistics101 treats either notation as equivalent.

The third row shows a vector with several numbers in it. You use this when there is no particular

pattern in the numbers that allows you to use one of the following more compact specification

methods.

The next four rows in the table show how you generate certain kinds of vectors without having to

type in all the numbers. Using the two term Sequence specification you enter only the lowest and

highest values of a desired sequence, separating those two values with a comma. The resulting

sequence vector will have all its elements differing from their adjacent element by 1. If the

number at the left of the comma is lower than that on the right, then the sequence will be in order

of increasing values. If the number at the left of the comma is higher than that on the right, then

the sequence will be in order of decreasing values. The next table row shows that an optional

third term may be added following a second comma to assign a “step” value that specifies how

much each element differs from its preceding element. The step value must be positive, even

when the values of the sequence are in decreasing order. Any or all of the two or three numbers

in the Sequence spec may be integer or floating point literals, or variables.

1
 You can get the intended result like this: TAKE jan,dec 1,12,3 result

Language Basics

55

For the Multiple specification, you enter the number of times (n1) that you want another value

(n2) or vector (vec) repeated, both separated by a pound sign (#), called the multiple operator. In

the Multiple Sequence specification, you specify a sequence on the right side of the pound sign

using any of the forms just described. Either or both sides of the multiple operator may be

variables.

A missing number is an element of a vector for which you have no data, but you want to

represent the fact that that element is not available. There are two special codes that can be used

for missing numbers. The two codes are “NaN” and period (“.”). NaN is an acronym for “Not a

Number.” The two codes are considered equivalent by Statistics101. For example, if you had a

set of data of students' height versus weight, but for some students you had only their height or

only their weight, you would mark the missing data with NaN or period like this:

COPY (62 71 60 68 NaN 72) heightData

COPY (102 115 . 170 145 194) weightData

Arrays

An array is an ordered collection of vectors that are referenced by a name and a set of one or

more index numbers separated by enclosing square brackets. An example of an vector identifier

that is a member of an array would be “myArray[n][3]”. The name, “myArray,” is called the

array name, and the variable “n” and the number “3” are called indexes. The number of indexes

that an array has is called its dimensions. The array myArray in this example is a two-

dimensional array. An array can have any number of dimensions.

Arrays are created using the NEWARRAY command. Each NEWARRAY command creates one

array and fixes its dimensions and their sizes. A NEWARRAY command creating the myArray

array might be as follows:

NEWARRAY myArray 5 6

That command specifies that the array has two dimensions, the first having the range 1 through

5, and the second having the range 1 through 6. Altogether, the array has space for 5x6 = 30

vectors. Note that for the NEWARRAY command itself, the dimension limits are not enclosed in

square brackets.

An array vector identifier can be used anywhere that a normal vector variable is legal. An array

vector identifier must always include the same number of dimensions that were specified in its

NEWARRAY command. For more information, go to the NEWARRAY entry in the

Statistics101 Help documentation.

Names

Later, you’ll see how commands, such as COPY, give a name to a vector. A named vector is

called a variable. For now, I’ll just state the rules for a valid name: it must begin with a letter,

followed by any number of letters or digits or underlines (_) or dollar sign ($) in any

combination. Upper and lower case letters are considered to be the same.

The hyphen (-) is allowed in names, but in the context of a LET command, it may be confused

with the minus sign and cause error messages. It is best to avoid its use.

Here are some valid names:

Language Basics

56

myName

standardDeviation$

class_grades

classGrades

class_1_grades

class1grades

And here are some invalid names along with the reasons they are invalid:

2class Names can’t start with a number. This will be interpreted as a number

followed by a name.

Class grades Names can’t have a space. This will be considered to be two names.

boys&girls Names can have only letters and digits, hyphens, underlines (_) and

dollar signs ($). Anything else is an error.

When creating their own variable names, some people prefer to use underscores to separate

words, while others prefer to use capital letters. You see examples of both in the valid names

above. In the programs to follow in this document, I will use capital letters instead of

underscores. It is a good idea to choose the style you like and stick with it consistently in a

program. Doing so makes it more readable, at least by you.

Strings

A string is a sequence of text characters treated as a unit. In Resampling Stats there are two types

of strings. The first type is called a literal string. A literal string is text contained between two

double quote marks. For example, “This is a literal string.” The second string type is called a

variable string. A variable string is a text string that has its own name. Variable strings are

created with the STRING command, which will be discussed briefly later. Strings are used as

arguments to some commands. For example, strings are used by graphing commands such as

HISTOGRAM to set the graph’s labels.

Commands

The command is the unit of computation of a Resampling Stats program. Each command

operates on data and produces a result. Every command is usually confined to one line
2
 with the

command name being the first item on the line followed by some number of “arguments.”

Arguments are numbers, variable names, or keywords that the command interprets. A keyword is

a special optional word that modifies the behavior of a command. Only a few commands take

keywords.

Of the 100-plus commands that are in the extended Resampling Stats language used by

Statistics101, 30 are used most frequently. Once you understand how to use those 30 commands

you will find it easy to add the others to your repertoire as needed. The complete list of

commands is given in Appendix 2 of this document. The commands are grouped by categories in

Appendix 3.

2
You can continue a command onto subsequent editor lines by using a “continuation character”. See the section

Continuation Lines

Language Basics

57

Tip: If you don’t know or remember the name of a command or subroutine, or you don’t know

whether a command or subroutine that you need already exists, you can do a keyword search of

the Command/Subroutine Index to find the answer. You access the Command/Subroutine index

via the Statistics101 Help>Command/Subroutine Index menu item or by pressing the F3 key.

The most frequently used commands are:

Language Basics

58

Command Description

ADD Arithmetically adds corresponding elements of its input vectors.

COPY Concatenates arguments into a single vector. An alternate name is DATA.

CONST Assigns a list of numbers to a series of names. The names can then be used

in place of the numbers.

COUNT Counts the number of elements that pass a test.

DIVIDE Arithmetically divides corresponding elements of its input vectors.

END Marks the end of an IF, REPEAT, WHILE, FOREACH, UNTIL, or

NEWCMD structure.

ENUM Creates a set of enumerators, i.e., named constants whose names have no

associated numerical value.

FOREACH Executes commands between FOREACH and END assigning each element

value of the given vector one by one to a variable.

GLOBAL Makes the names of listed constants and variables visible throughout an

entire program.

HISTOGRAM Graphs a histogram of one or more vectors.

IF Allows execution of commands between IF and END, ELSEIF or ELSE if a

test is passed.

LET Uses mathematical formula notation to compute a value and assign it to a

variable.

MEAN Computes the mean of a vector.

MEDIAN Computes the median of a vector.

MULTIPLY Arithmetically multiplies corresponding elements of its input vectors.

NAME Creates one or more Named Constants. Combines the functions of the

CONST and ENUM command.

NEWCMD Creates a “new command” or “subroutine”.

NORMAL Generates a vector of random numbers from a normal distribution.

PERCENTILE Computes specified percentiles from an input vector.

PRINT Prints the contents of one or more vectors to the output window.

REPEAT Executes commands between REPEAT and END a given number of times.

SAMPLE Randomly selects a given number of elements from a vector, with

replacement.

SCORE Accumulates results of random trials in a scoring vector.

SHUFFLE Randomly reorders the elements of a vector.

STDEV Computes the standard deviation of a given vector.

SUBTRACT Arithmetically subtracts corresponding elements of its input vectors.

SUM Adds all the elements of its input vector and puts the sum in the result vector.

TAKE Copies specific elements from its input vector into its result vector.

VARIANCE Computes the variance of a vector.

WHILE Executes commands between WHILE and END as long as a test passes.

Although this document will always show the commands in upper case, you can use lower case

if you prefer. Statistics101 does not distinguish between upper and lower case.

Language Basics

59

The typical command follows this pattern:

COMMANDNAME optionalKeyword input1 input2 … inputN result

This means that the command, COMMANDNAME may have an optional keyword, takes the

space-separated arguments input1 through inputN, does whatever it is supposed to do with

them and puts the result in a single output variable, here called result. Any preexisting contents

of the result vector are erased and replaced with the command’s output. As an example, suppose

you have two vectors whose elements you want to add to each other. The ADD command can do

the work for you (as you’ll see later, you can also use the LET command to do addition as well

as much more):

ADD vector1 vector2 vecSum

After ADD finishes, each element in vector1 will have been added to the corresponding

element in vector2 and placed in the corresponding position in vecSum. If the two input vectors

are of differing lengths, then the last element of the shorter one will repeated as many times as

needed to make the two vectors’ lengths equal, then they will be added. The shorter vector is

actually unchanged; it is “virtually” extended only during the command’s execution. Here is how

ADD would work in a specific case:

vector1: (1 2 3 4 5 6)

vector2: (5 6 7) (the 7 is “virtually” repeated 3 more times)

vecSum: (6 8 10 11 12 13)

Like ADD, all the commands that operate on an element-by-element basis will virtually extend

shorter vectors so that all the input vectors are the same length.

There is one atypical command, SCORE, which has the form:

SCORE input result1 result2 … resultN

This command takes only one input vector and can have one or more result vectors. The SCORE

command, unlike all the others, does not replace the result vectors’ contents. It appends the first

element of vector input to the end of result1, the second element of input to the end of

result2, etc. Its purpose is to remember the results of all the simulations that a program is

performing. Normally you will use it with only one input and one result vector.

Command Syntax Descriptions

Since each command has its own number and type of arguments, it is necessary to have a simple

and concise method of describing these features. The Statistics101 program’s help bar displays

the syntax for each command using the following conventions:

An argument is described by its name. Keywords are shown capitalized. If an argument is

enclosed in square brackets, [someArg], that argument is optional. If an argument is enclosed in

curly brackets, {someArg}, that argument may be used zero or more times. If the argument name

has neither square nor curly brackets, that argument is required. Ordinary parentheses are used to

group required arguments. If a vertical bar, |, separates arguments or keywords, that indicates

that a choice must be made between those arguments; only one is allowed. If an argument is

enclosed between quotes, “someArg,” that argument is a literal string. Here are some schematic

examples of command syntax using these conventions and their explanations. CMD represents

any command and A, B, C and D represent the arguments of the command.

Language Basics

60

CMD A Command CMD requires one argument: A.
CMD A B C CMD requires three arguments: A B and C.
CMD A (B | C) D CMD requires three arguments: A B D or A C D.
CMD A [B | C] D CMD requires two arguments (A and D) and optionally one of argument

B or C following A.
CMD A {B} C CMD requires A and C. Allows any number of Bs following A.

Taking a real example, the syntax description for the ADD command is:

ADD inputVector inputVector {inputVector} resultVariable

This means that the ADD command requires at least two input vectors and a result vector. Here’s

another example (this is all one line even though it had to be broken into three lines to print in

this space):

HISTOGRAM [PERCENT] [BINSIZE binsizeNumber | BINS binsNumber] ["yAxisLabel" |

yAxisLabelStringVariable["xAxisLabel" | xAxisLabelStringVariabel]]

inputVector {inputVector}

This syntax description means that the HISTOGRAM command has an optional keyword,

percent, a choice between either (or neither) of two keywords, binsize or bins, each of which

requires an argument, an optional quote-enclosed string or string variable for the Y-axis label

and an optional quote-enclosed string or string variable for the X-axis label, all followed by one

or more input vectors. Also implied is that if there is an X-axis label there must be a preceding

Y-axis label.

Comments

In Resampling Stats, anything to the right of an apostrophe (') is a comment intended for the

human reader and is ignored by Statistics101. Comments are to help a reader, who might be you

at some later date, to understand what a program is trying to accomplish. If your program has

any complexity, it is a good idea to add comments to it for future aid in understanding it. The

apostrophe may also be the first character on a line, in which case the entire line is a comment.

'This whole line is a comment

ADD A B C 'This is a partial line comment. This command adds A to B to get C.

There is a second kind of comment used in Statistics101, called the “block comment.” The block

comment may be contained entirely on one line or it may span multiple lines. Therefore, the

block comment must be enclosed between two markers, a begin-comment marker (/*) and an

end-comment marker (*/). If you are familiar with the languages C or Java, you will recognize

this convention. Statistics101 will ignore anything between the two markers. Only one asterisk is

needed for either marker, but you may put as many as you like if you wish to highlight the

comment block. Here is a short block comment:

/* Everything between the start

and end markers is a block

comment and will be ignored by Statistics101. */

Comments do not affect the execution speed of your program in Statistics101, so use them

liberally. For further hints on how to improve your program’s readability, see Program Clarity

and Readability.

Language Basics

61

Continuation Lines

Normally you will type each command and all its arguments on a single line. A line in the editor

can be as long as needed. But sometimes you might want to divide a command over more than

one line. You can do this by ending each line of the command except its last with the

continuation character, which is the backslash (“\”). For example, the command

HISTOGRAM percent binsize 0.1 "Probability Density" "X value" distribution

could in the extreme, be written over several lines like this:

HISTOGRAM percent \

 binsize 0.1 \

 "Probability Density" \ 'Y axis label

 "X value" \ 'X axis label

 distribution 'Last line has no continuation marker

Note that the last line must not have a continuation character. If you have a comment on a

continuation line, the comment must follow the continuation marker as in the first two comments

in the above example. If you put the continuation marker after the comment, it will be considered

part of the comment and ignored, resulting in a syntax error message. Also, do not break a line in

the middle of a variable name, keyword, or quoted string.

The LET Command

The purpose of the LET command is to make it easy to express complicated mathematical

formulas. Here is an example using LET to compute the hypotenuse of a triangle:

LET hypotenuse = SQRT(sideA^2 + sideB^2)

Note that if sideA and sideB are vectors with many elements, then the above command computes

the hypotenuse for each pair of elements, one element from sideA and one from sideB, and puts

the result for each pair into the vector, hypotenuse. For example, the following program,

COPY (1 2 3 4) sideA

COPY (2 3 4 5) sideB

LET hypotenuse = SQRT(sideA^2 + sideB^2)

PRINT hypotenuse

produces this output:

hypotenuse: (2.23606797749979 3.605551275463989 5.0 6.4031242374328485)

Without the LET command, you would have to do something like the following to accomplish

the same calculation and it would be much harder to comprehend at a glance:

SQUARE sideA sideAsquared

SQUARE sideB sideBsquared

ADD sideAsquared sideBSquared hypSquared

SQRT hypSquared hypotenuse

PRINT hypotenuse

Of course, you can use the arithmetic operators, +, -, *, /, %, and ^, which are respectively, add,

subtract, multiply, divide, remainder, and power. There is also a vector concatenation operator,

&, that joins the vector on its right to the vector on its left.

The minus sign “-” in its common usage has four different meanings: as a subtraction operator (a

- b), as a “change sign” operator (-a), as an indicator that a literal number and/or its exponent is

Language Basics

62

less than zero (-4.5E-3), and as a hyphen in a variable name (“class-grades”). When used

following a variable name, you should put a space before the minus sign so it isn’t interpreted as

a hyphen. Otherwise, you will get a syntax error message.

You can also use literal vectors in the LET command. Rewriting the above calculation with

literal vectors in the LET command (showing two ways to write literal vectors) gives this:

LET hypotenuse = SQRT((1 2 3 4)^2 + 2,5^2)

PRINT hypotenuse

As long as the result variable name (hypotenuse in this example) is not the same as that of a

subroutine or a Statistics101 command, you can omit the LET command name. Statistics101 will

detect the equal sign and interpret the line as a LET command. Rewriting the above without the

LET keyword exemplifies this feature:

hypotenuse = SQRT((1 2 3 4)^2 + 2,5^2)

PRINT hypotenuse

You can even replace the COPY commands with LET commands like this:

sideA = (1 2 3 4)

sideB = (2 3 4 5)

hypotenuse = SQRT(sideA^2 + sideB^2)

PRINT hypotenuse

The LET command allows you to use all of the single-argument math command names, such as

SIN and LOG, and some of the statistical command names, such as MEAN and MEDIAN as if

they were functions, similarly to the way that SQRT is used above. In Appendix 3, all the

commands that are legal to use with LET are shaded.

Furthermore, if you define a subroutine that has only one input variable and one output variable,

you can invoke that subroutine within a LET command. For example, if you define a subroutine

of the form

NEWCMD MYSUB inVec outVec

 . . .

END

where you can use any name you like instead of “mysub,” you can invoke it in a LET command

as you would any mathematical function:

. . .

LET resultVec = 3 * MYSUB(vecA) + COS(vecB)

. . .

For full information on the LET command see the Statistics101 help documentation.

The STRING Command

The STRING command creates a single string variable by concatenating any number of literal

strings, string variables, or vector variables. String variables can be used in any command that

accepts a literal string argument. For example, you could use this command to create a string

variable called xAxisLabel:

STRING "Sample Size = " size xAxisLabel

http://www.statistics101.net/userguide/UserGuide32.html

Language Basics

63

If size contained the number 30, then xAxisLabel would contain “Sample Size = 30.0”. The

string variable xAxisLabel could then be used as the label for the X-axis of a histogram like

this:

HISTOGRAM "Percent Frequency" xAxisLabel myData

The above command shows the use of a literal string ("Percent Frequency" as the Y axis

label) and a string variable (xAxisLabel as the X axis label) in the same command at the same

time.

If you want to be able to easily distinguish string names from vector names, you could adopt the

convention of adding a "$" to the string name either as a prefix or a suffix as in “$stringName”

or “stringName$.

There are two other commands that operate on strings, STRING_COMPARE and

STRING_REPLACE. Look in the Statistics101 help documentation for full details on all three

string commands.

Programs

A program is an ordered sequence of commands designed to achieve some result. Since every

program you write will need to display its output on the screen, let’s start with the PRINT

command. Much of what you learn from the PRINT command will apply to the other commands

as well. PRINT writes its arguments to the Statistics101 output window, not to your printer.

Type the following into the empty Statistics101 edit window:

PRINT 5 6 7

This one line is a very simple, but complete, program. The command name, PRINT, is first on

the line, and is followed by some number of “arguments,” in this case the constants 5, 6, and 7.

The arguments are separated by one or more spaces.

There are three ways to run this or any program in Statistics101:

 Click on the “Run” button in the Statistics101 toolbar,

 Use the “Run Program” selection from the Run menu, or

 Use the keyboard shortcut, Ctrl-R.

Choose one of these ways and observe the result:

internal#001: 5.0

internal#002: 6.0

internal#003: 7.0

What does this mean? Our PRINT command had three numbers as its arguments. A number by

itself, which is not enclosed in parentheses, is considered to be a vector containing only that

number. So the PRINT command sees that it has three vectors, each containing one number, as if

it had been written like this:

PRINT (5) (6) (7)

Since these three vectors had no names, Statistics101 assigned names to them. These names

differ only in their arbitrarily assigned numerical suffix. Then it printed each name one to a line,

followed by a colon, followed by the value associated with that name. Note that the number-sign

Language Basics

64

(#) is not legal in any names that you can create. It is only used in these internally generated

names.

Let’s change our example slightly:

PRINT (5 6 7)

When you run this program using one of the three methods above, you see:

internal#001: (5.0 6.0 7.0)

This time, because you enclosed the three numbers in parentheses, thus telling Statistics101 that

the numbers constituted a vector, you got only one temporary variable and it was assigned to a

vector made up of our three numbers. As an aside, although you entered the numbers as integers,

they printed out as floating point numbers, i.e., they printed out as numbers with decimal points.

Statistics101 does all its arithmetic in floating point, and the output will normally be in floating

point.

Normally, you won’t see these internally assigned names because there is no need to print out

constants. You assign names to important values in your program using almost any other

command in the repertoire. The most common would be the COPY command. COPY, like most

Resampling Stats commands, takes two or more arguments, the last of which must be a name that

will be assigned to the vector that the command builds. You could experiment using the COPY

command like this:

COPY 5 6 7 myData

PRINT myData

Here, COPY has 4 arguments: three numbers and a name for the result. When you run this two-

line program using one of the three methods described earlier, you will see:

myData: (5.0 6.0 7.0)

What has happened? The COPY command automatically concatenates all its arguments except

the last into a single vector and gives that vector the name of its final argument. So here, COPY

put the three numbers into a vector named myData, and then the PRINT command printed the

name, followed by the colon, followed by the list of numbers enclosed in parentheses.

I could have written:

COPY (5 6 7) myData

PRINT myData

This time, COPY has only two arguments: the vector (5 6 7) and a name for the result. In this

second COPY command, although the data is entered differently, the result is exactly the same as

before:

myData: (5.0 6.0 7.0)

The COPY command is used to create a vector filled with data from literal vectors and/or

variables. Here are some examples of literal vectors used with COPY that show the result of

printing out the created vector:

Command Result

COPY (1 2 3 4 5) A A: (1.0 2.0 3.0 4.0 5.0)

COPY 1,5 B B: (1.0 2.0 3.0 4.0 5.0)

Language Basics

65

Command Result

COPY 1 2 3 4 5 C C: (1.0 2.0 3.0 4.0 5.0)

COPY 5#3 D D: (3.0 3.0 3.0 3.0 3.0)

COPY 5,2 (2 4 6) 3#7 E E: (5.0 4.0 3.0 2.0 2.0 4.0 6.0 7.0 7.0 7.0)

COPY 2#3,5 F F: (3.0 4.0 5.0 3.0 4.0 5.0)

You can also use variables as input arguments to COPY. Here is a simple program solely to

illustrate the use of variables in COPY:

COPY 1,5 A 'Create vector A containing the numbers 1 through 5

COPY 5#3 B 'Create vector B containing five threes

COPY A B C 'Concatenate A and B putting the result in C

PRINT C 'Print C

If you didn’t need the vectors A and B for any other purpose in your program, you could

dispense with them, replacing the above program with these two lines:

COPY 1,5 5#3 C

PRINT C

Both programs produce this result:

C: (1.0 2.0 3.0 4.0 5.0 3.0 3.0 3.0 3.0 3.0)

Occasionally you might find that you need to concatenate one or more vectors into one of those

same vectors. For example, say you had two vectors, A and B, and you wanted to put the

contents of A onto the end of B. Here is a command that will do so:

COPY B A B

This command copies the existing contents of B followed by those of A into B, replacing B’s

original contents. If you wanted to do it in the reverse order, i.e., you wanted to put A onto the

front of B, you would write:

COPY A B B

This works for any number of vectors. If you had three vectors, A, B, and C, and wanted to put A

then B then C into B, this command will do it:

COPY A B C B

The COPY command has a number of synonyms or aliases. The synonyms are CONCAT,

DATA, NUMBERS, and URN. In the original Resampling Stats language, these all had

somewhat different behaviors. For Statistics101, the features of all those commands were

consolidated into one command and that command was allowed to be invoked by any of the

listed names. You can always use the name COPY, or if you want to emphasize the purpose of

the copy you can choose one of the other names. For entering data, for example, you might

choose to use the name DATA instead of COPY.

Now, let’s turn to a simple example that might have some practical application. Say you have the

test scores from a class of 15 students and you want to know the average grade and the standard

deviation. Here is how that might look as a Resampling Stats program:

DATA (89 98 69 83 58 40 78 93 85 60 72 83 79 83 76) scores

STDEV pop scores standardDeviation

MEAN scores average

Language Basics

66

PRINT average standardDeviation

The STDEV command computes the standard deviation of the scores vector and puts the result

in the variable called standardDeviation. STDEV can compute the standard deviation of either

a sample or a population. In this example the vector scores contains the entire population, not

just a sample. The keyword pop tells the command to use the population formula for standard

deviation instead of the sample formula. The MEAN command computes the mean of the

elements of the scores vector and puts it in the variable called average. PRINT then produces

the following output:

average: 76.4

standardDeviation: 14.42590262918292

Notice that I have given meaningful names to the variables/vectors in the program—no more

“A” or “B” as names. The meaningful names come from the context of the problem the program

is solving. I use A and B as names in this document when the programs are just illustrating a

pattern and not solving a meaningful problem. If you use meaningful names for your variables,

your program becomes much more understandable to anyone reading it.

As suggested earlier, some commands take keywords that modify the command’s behavior.

PRINT is another example of such a command. If the keyword table immediately follows the

PRINT, then the PRINT command will print its arguments as a table. Each argument will be

printed as a column; the first argument will be the first column, the second argument will be the

second column, and so on. The table headings will be the names of the vectors. For example, the

program

'Print a table of squares and square roots.

COPY 1,10 Number

MULTIPLY Number Number Square

SQRT Number SquareRoot

PRINT table Number Square SquareRoot

produces the following table as its output.

Number Square SquareRoot

1 1 1

2 4 1.414214

3 9 1.732051

4 16 2

5 25 2.236068

6 36 2.44949

7 49 2.645751

8 64 2.828427

9 81 3

10 100 3.162278

The PRINT command has other options you can learn about by reading its help text. Help is

available in the Statistics101 program via the menu selection Help>Help.

Logical Expressions

A logical expression is a comparison between values that produces a true or false result. Logical

expressions are used to restrict the application of a command to only the elements that cause the

result of the logical expression to be true. There are two types of logical expressions, simple tests

(or just tests), and compound tests.

Language Basics

67

Simple Tests

An example of a simple test would be “A<B” which can be read as “is A less than B?” This test

evaluates to true if A is less than B and to false otherwise. The “less than” sign, “<”, is called a

comparison operator. There are six commands that require simple tests. These are COUNT,

MULTIPLES, RECODE, RUNS, TAGS, and WEED. (The commands IF, ELSEIF, UNTIL, and

WHILE can accept compound tests as well as simple tests. These commands will be described

later.) A test restricts a command so that it applies only to the elements in its input vector that

satisfy the test. The command uses the test to compare either the first element or each element of

an input vector with one or two specified values or a list of values.

Let’s take the following simple program as an example:

COPY 1,5 5#3 C

COUNT C = 3 D

PRINT C D

I’ve used the command COUNT, which requires a test. COUNT counts all the elements of its

input vector, “C,” that pass its test, “= 3” (the space between the test operator and the 3 is

optional). So this COUNT command says “count how many elements of the vector C are equal

to 3 and put the result in D.” When you run this program, you find:

C: (1.0 2.0 3.0 4.0 5.0 3.0 3.0 3.0 3.0 3.0)

D: 6.0

You will see other examples of the use of tests in programs throughout this book.

The complete list of test operators is described in the next table. Except for the memberof and

notmemberof tests, if the right hand side argument of a test is a vector, only the first element of

the vector is used in the test. If the left hand side (input) argument is a vector, then it depends on

the command as to whether the test applies to only the first element (as in the IF command) or to

all the elements (as in the COUNT command) of the input vector. As usual, the typographical

case of the test keywords does not matter. Thus notMemberOf, notmemberof, NOTmemberof are

all equivalent.

With regard to tests on missing data (NaN or “.”), NaN is equal only to NaN, not to any other

number. Furthermore, NaN is not greater than or less than any number, including NaN.

Comparison Operators

Operator Description

> Greater than. “The element on the left is greater than the number on the

right.” E.g., the following command counts the number of elements of Z that

are greater than 5 and puts the result in result.

COUNT Z > 5 result

< Less than. E.g., the following command counts the number of elements of Z

that are less than 5 and puts the result in result.

COUNT Z < 5 result

Language Basics

68

Comparison Operators

Operator Description

= Equal. E.g., the following command counts the number of elements of Z that

are equal to 5 and puts the result in result:

COUNT Z = 5 result

<> Not equal. E.g., the following command counts the number of elements of Z

that are not equal to 5 and puts the result in result.

COUNT Z <> 5 result

>= Greater than or equal. E.g., the following command counts the number of

elements of Z that are greater than or equal to 5 and puts the result in result.

COUNT Z >= 5 result

<= Less than or equal. E.g., the following command counts the number of

elements of Z that are less than or equal to 5 and puts the result in result.

COUNT Z <= 5 result

memberof The element on the left is a member of the vector on the right. E.g., The

following command counts how many elements of Z are members of

vectorA and puts the answer in result.

COPY (1 4 15 22 39) vectorA

COUNT Z memberof vectorA result

notmemberof The element on the left is NOT a member of the vector on the right. E.g., The

following command counts how many elements of Z are not members of

vectorA and puts the answer in result.

COPY (1 4 15 22 39) vectorA

COUNT Z notmemberof vectorA result

between The element on the left is between (inclusive) the two numbers on the right.

E.g., The following command counts the number of elements of Z that are

between 1 and 10 and puts the answer in result. Note: there is no comma

between the 1 and the 10.

COUNT Z between 1 10 result

Also, the limits may be in reverse order and it still works:

COUNT Z between 10 1 result

notbetween The element on the left is NOT between (inclusive) the two numbers on the

right. E.g., The following command counts the number of elements of Z that

are not between 1 and 10 and puts the answer in result. Note: there is no

comma between the 1 and the 10.

COUNT Z notbetween 1 10 result

Also, the limits may be in reverse order and it still works:

COUNT Z notbetween 10 1 result

Language Basics

69

Compound Tests

Sometimes you need to express a compound test. A compound test is composed of one or more

simple tests combined with a “NOT,” or an “AND,” or an “OR,” or an “XOR” (exclusive-or)

condition. As defined above, a “logical expression” is either a simple test, such as a < b, or a

compound test. Thus, wherever a logical expression is allowed, such as in an IF, ELSEIF,

UNTIL, or WHILE command (which I will discuss later), a simple test is also allowed. The

reverse is not true.

For example, you might want to test whether a card hand had two clubs and three hearts. This is

an “and” condition. Or, you might want to test whether the hand had two clubs or three hearts.

This would be the “or” condition. Or, you might want to test whether the hand had two clubs or

three hearts but not both. This is the “exclusive-or” case.

Here are examples of all three cases. The examples assume that the variables clubCount and

heartCount already contain the number of clubs and hearts that were in some simulated card

hand. First, the “and” case, expressing “two clubs AND three hearts”:

clubCount = 2 AND heartCount = 3

The above line means that if the variable clubCount is two and the variable heartCount is

three, then this logical expression evaluates to true. Otherwise it evaluates to false.

Next, for the “inclusive-or” case, expressing “two clubs OR three hearts OR both”:

clubCount = 2 OR heartCount = 3

And, finally, the “exclusive-or” case, expressing “two clubs OR three hearts, BUT NOT BOTH”:

clubCount = 2 XOR heartCount = 3

The above examples are fairly easy to write and to interpret even without knowing the details of

the logical operators NOT, AND, OR, and XOR. To use them for more complicated logical

expressions, you must understand their properties and default behaviors as described in the

following table. The term “precedence” refers to the order in which an operator will be applied in

cases where a decision must be made between two or more operators. Higher precedence

operators will be applied before lower precedence operators. Operators of equal precedence will

be applied in order from left to right.

Logical Operators

Operator Precedence Description

NOT 1

(highest)

Logical NOT. Takes only one test argument, the one on its right.

Results in true if the test on its right is false. Results in false if the test

on its right is true. Highest precedence of all the logical operators.

Example:

IF NOT A = 4

which, by the way, happens to be equivalent to

IF A <> 4

Language Basics

70

Logical Operators

Operator Precedence Description

AND 2

(middle)

Logical AND. Takes two test arguments, one on its left and one on its

right. Results in true if both the test on its left and the test on its right

are true. Results in false otherwise. Precedence is below that of NOT

and above that of OR and XOR. Example:

IF A > 5 AND B between 1 2

OR 3

(lowest)

Logical inclusive OR. Takes two test arguments, one on its left and

one on its right. Results in true if either the test on its left is true, or

the test on its right is true, or both are true. Results in false otherwise.

XOR and OR are of equal precedence. Theirs is the lowest

precedence. Example:

IF A < 5 OR B <> C

XOR 3

(lowest)

Logical exclusive OR. Takes two test arguments, one on its left and

one on its right. Results in true if either the test on its left is true or the

test on its right is true, but not both. Results in false otherwise. XOR

and OR are of equal precedence. Theirs is the lowest precedence.

Example:

IF A = 5 XOR B = 15

The simplest form of logical expression is just a test, say,

a <= b

One step up in complexity is this next logical expression, which happens to be equivalent to the

above:

NOT a > b

You can read this as “a is NOT greater than b.”

In the following examples the terms “test1” and “test2” etc. are used as a “shorthand” to

represent the arguments of the logical operators, which are tests of the form “a = b,” “a < b,” “a

between b c,” or any other test listed in the test operator table. Thus, a complete logical

expression such as

a = b AND c <> d OR e between 1 2 AND f < g

can be described like this in that shorthand:

test1 AND test2 OR test3 AND test4

This shorthand is just for the purposes of visually simplifying the following examples in this

tutorial. It is not valid Resampling Stats syntax and cannot be used in the Statistics101 program. I

now use the shorthand to give specific examples that will clarify the application of the

precedence rules. Any logical expression represented by,

test1 AND test2 OR test3 AND test4

is equivalent to

(test1 AND test2) OR (test3 AND test4)

Language Basics

71

because of the default precedence rules. AND operators will be executed prior to OR operators.

Another example, this time adding a NOT:

test1 AND NOT test2 OR test3 AND test4

The above logical expression is equivalent to:

(test1 AND (NOT test2)) OR (test3 AND test4)

A good way to understand how the precedence rules apply in the absence of parentheses that

override the defaults is this: First all NOTs bind to the test that follows them, second, all ANDs

bind to their arguments, and third, all ORs bind to their arguments that are the results of the first

two steps. In the second step, if there are several ANDs in sequence they are all grouped together

as in this next comparison of equivalent expressions:

test1 AND test2 AND test3 OR test4 AND test5 AND test6

The above logical expression is equivalent to:

(test1 AND test2 AND test3) OR (test4 AND test5 AND test6)

Applying the rules to this next expression, which has several ORs in sequence with an AND in

the middle,

test1 OR test2 OR test3 AND test4 OR test5 OR test6

results in this equivalent expressed using parentheses:

test1 OR test2 OR (test3 AND test4) OR test5 OR test6

If you have any uncertainty about how the defaults apply in a complex logical expression that

you write, you should use parentheses to coerce the expression to have the meaning you want.

Compound Commands

So far, our programs have been a simple sequence of commands that executed one by one until

the last one was completed. A sequence of commands is the basic building block of a computer

program. The real power or the computer comes from its ability to “decide” whether to execute

some series of instructions or to repeat a series of instructions many times with slight changes.

The commands that perform these decisions and loops in Resampling Stats are IF, REPEAT,

FOREACH, WHILE, UNTIL, and NEWCMD. Each of these commands controls a sequence, or

“block,” of other commands. Therefore, they are called “compound commands.” In each case,

the block of commands is terminated by an END command. The simplest of the six compound

commands is the REPEAT command so I’ll start there.

REPEAT ... END

Enter the following into the Statistics101 edit window:

REPEAT 5

 COPY 1,3 A

 PRINT A

END

The REPEAT command takes only one argument. In this case, the argument is 5. The argument

tells it how many times it is to repeat the commands that are between REPEAT and its END

Language Basics

72

command. The argument may be any number; it can even be a vector, but if it is a vector, only

the first element is used, the rest are ignored.

Tip: Notice that the two commands between the REPEAT and the END are indented. That is

done just to make it easier to identify the block of commands that are controlled by the REPEAT

command. It is not required, but it is a good practice to indent such blocks. You can have the

Statistics101 program do the indenting for you automatically by choosing one of the “Indent

Program” selections from the Edit menu or the Toolbar, or by pressing the “I” key while holding

down the Ctrl key on your keyboard.

When you run the above program, you will get this result:

A: (1.0 2.0 3.0)

A: (1.0 2.0 3.0)

A: (1.0 2.0 3.0)

A: (1.0 2.0 3.0)

A: (1.0 2.0 3.0)

The program has executed the COPY and the PRINT commands five times. If you think

carefully about the program, you’ll realize that the COPY statement copies the same numbers

into the variable A over and over. Since that only needs to be done once, it is more efficient to

move the COPY command out of the loop like this:

COPY 1,3 A

REPEAT 5

 PRINT A

END

Now, the COPY executes once and the PRINT executes five times. The computer is therefore

doing less busy-work. It is good to be alert for these kinds of optimizations in the programs you

write.

Many times you will write a program that follows this pattern:

...

REPEAT 1000

 ... 'compute result

END

LET probability = result / 1000 ' divide result by number of trials

PRINT probability

In this pattern, you divide the result by the number of trials to calculate the probability. If you

want to change the number of trials, you need to change it in two places. A more flexible way is

to use a variable as in the following:

...

COPY 1000 numberOfTrials

REPEAT numberOfTrials

 ... 'Compute result

END

LET probability = result / numberOfTrials

PRINT probability

Now you need only to change the number of trials once, in the COPY command.

Language Basics

73

FOREACH ... END

Like the REPEAT command, the FOREACH command repeats all the commands that are

between the FOREACH and its matching END command, but its rule of repetition is different.

The FOREACH command takes two arguments. The first argument is a variable that takes on,

one by one, the value of each of the elements of the second argument. Each time through the

loop, the variable is assigned the next value from the second argument and the commands

between FOREACH and END are executed using that new value.

A simple example will make this clearer. In math, the “factorial of N,” written as “N!”, is the

product of all the integers between 1 and N inclusive. Here is a program to compute a table of

factorials:

COPY 1,10 Numbers

FOREACH number numbers

 PRODUCT 1,number factorial 'Compute product of numbers from 1 to number

 SCORE factorial Factorials 'Save the result in vector, Factorials

END

PRINT table numbers factorials

And here is its result:

Numbers Factorials

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3.6288E06

You can read the FOREACH statement as if it said “for each number in the vector numbers, do

the following.” Each time through the loop, number is assigned the next value from the numbers

vector, then the commands in the body of the loop (PRODUCT and SCORE) are executed. After

the commands are executed for each value in the numbers vector, the results are printed out as a

table. You can compare this program with the earlier one that computed a table of squares and

square roots.

You can use a sequence specification as the vector argument of the FOREACH command, like

this:

FOREACH n 20,40,2

. . .

END

This iterates through all the even numbers between 20 and 40. The first two parts of the sequence

specification can be variables and/or named constants. The third part, if present can be a variable,

a number, or a named value (but not an enum).

There are more examples using FOREACH in the section on Nesting Commands.

Language Basics

74

IF ... ELSEIF ... ELSE ... END

The IF command takes a test, or more generally, a logical expression, as its argument. IF has

three forms. The simplest form executes the commands between IF and END only if the result of

the test is “true.” Here’s the outline of the simple IF command:

IF logicalExpression

 ' Commands to be executed if logicalExpression is true

END

This means that the IF command takes a logicalExpression as an argument, then is followed by a

list of commands, followed by an END command. As a simple example, look at this program

segment:

...

IF A <10

 PRINT A

END

Assume that in some earlier part of the program A has been given a value. Then in this part, if

the value of A is less than 10, the PRINT statement will execute and print out the value of A. If

A was a vector with more than one element, only the first element is used to determine the result

of the test. To clarify this point, type this program into the Statistics101 edit window:

COPY (3 5 7 8 9 20 32 55) A

COPY (10 2 15 22 19) B

IF A<B

 PRINT A

END

If you run this program you will see this result in the output window:

A: (3.0 5.0 7.0 8.0 9.0 20.0 32.0 55.0)

The test passed and A was printed because the first element (3) of A was less than the first

element (10) of B.

Returning momentarily to the examples from the section on logical expressions, I can now show

how those expressions are used in IF commands. Each example uses an IF command and

assumes that the variables clubCount and heartCount already contain the number of clubs and

hearts that were in some simulated card hand. First, the “and” case, expressing “two clubs AND

three hearts”:

IF clubCount = 2 AND heartCount = 3

 LET successCount = 1 + successCount

END

This command means that if the variable clubCount is two and the variable heartCount is

three, then record this as a success by adding a 1 to the variable named successCount.

Otherwise, skip to the command that follows the END command.

Next, for the “inclusive-or” case, expressing “two clubs OR three hearts OR both”:

IF clubCount = 2 OR heartCount = 3

 LET successCount = 1 + successCount

END

And, finally, the “exclusive-or” case, expressing “two clubs OR three hearts, BUT NOT BOTH”:

Language Basics

75

IF clubCount = 2 XOR heartCount = 3

 LET successCount = 1 + successCount

END

The second, more general form of the IF command includes an ELSE command. It looks like

this:

IF logicalExpression

 ' Commands to be executed if logicalExpression is true

ELSE

 ' Commands to execute if logicalExpression is false.

END

Here is a very simple concrete example:

IF A < B

 PRINT A

ELSE

 PRINT B

END

 In this form, if the test is true, the commands between IF and ELSE will be executed. If the test

is false, then the commands between ELSE and END will be executed. So here, if the first

element of A is less than the first element of B, then the program will print A; otherwise, it will

print B.

The third and most general form of the IF command adds the ELSEIF command. This form

looks like this:

IF logicalExpression1

 ' Commands to execute if logicalExpression1 is true

ELSEIF logicalExpression2

 ' Commands to execute if logicalExpression1 is false

 ' but logicalExpression2 is true

ELSEIF logicalExpression3

 ' Commands to execute if logicalExpression1 and

 ' logicalExpression2 are false but logicalExpression3 is true

ELSEIF logicalExpression4

 . . .

ELSE

 ' Commands to execute if all the above logicalExpressions failed

END

In this form, there can be any number of ELSEIF commands. Each ELSEIF command must have

a logicalExpression as its argument. Only one set of commands will be executed even if more

than one test would pass. The first test that passes is the one that will execute, and then the

program will skip all the remaining ELSEIF and ELSE commands and continue after the END

statement.

The ELSE clause is optional, but there can be no more than one ELSE. The ELSE command

must not have an argument. The commands in the ELSE clause will only be executed if all the

other tests in the IF...ELSEIF...ELSE...END block fail.

This most general IF block command can act as what is called in other computer languages a

“case statement.” Suppose you had a simulation in which you had several kinds of animals,

chosen at random and you wanted to do different things depending on which animal was

selected. Here is how that might be done.

Language Basics

76

ENUM cat dog cow bird

COPY cat,bird animals 'copy the sequence from cat to bird into animals

'. . .

SAMPLE 1 animals animal 'choose one kind of animal at random

IF animal = cat

 'do cat commands

 PRINT "Meeoow!"

ELSEIF animal = dog

 'do dog commands

 PRINT "Arf arf!"

ELSEIF animal = cow

 'do cow commands

 PRINT "Moooo!"

ELSEIF animal = bird

 'do bird commands

 PRINT "Tweet tweet!"

END

'. . .

This example also introduces the ENUM command, short for “Enumerator.” This command

allows you to use names such as cat, dog, ace, deuce, red, blue, etc. that have meaning in your

program but don't have to have numerical values. And, as you can see from the example, once

you have created the names, they can be used to specify a sequence. See the section Program

Clarity and Readability for complete information on the ENUM, CONST and NAME

commands.

WHILE ... END

The WHILE command is similar to the IF command in that it takes a logical expression as its

only argument. Like IF, WHILE also executes the commands between itself and the END

command if the logical expression’s result is true. The difference is that after executing its block

of commands, WHILE performs the logical expression again and if it evaluates to true again, it

will execute its command block again. This will continue until the logical expression evaluates to

false. Thus, some part of the logical expression must change or the loop will never end. If the

logical expression evaluates to false the very first time the loop is entered, the loop will be

skipped. Here’s an example:

COPY 0 A 'Give A the starting value zero

WHILE A < 3 'As long as A is less than three, do the following

 PRINT A ' Print A

 LET A = 1 + A ' Add 1 to A and put the result in A

END

 In this example, A changes its value each time through the loop, increasing by 1 each time. It is

the command ADD A 1 A that causes A to be given a new value that is its old value plus 1.

Eventually A will no longer be less than three and the WHILE loop will terminate. Here is the

output of the program:

A: 0.0

A: 1.0

A: 2.0

The logical expression for the WHILE command can be as complex as you like. See the section

Compound Tests for more information on logical expressions.

Language Basics

77

UNTIL ... END

The UNTIL command offers another looping option. Like the WHILE command, it requires a

logical expression as its argument. This loop executes the commands between UNTIL and END

until its logical expression becomes true. The UNTIL command tests its logical expression each

time through the loop, but only after it executes its block of commands. That means that no

matter what the logical expression’s value is when the loop is first entered, the loop will execute

at least once.

A conditional loop is a loop whose number of repetitions is not fixed but is determined by a

logical expression. WHILE and UNTIL loops are conditional loops. REPEAT and FOREACH

are unconditional loops. If you are writing a conditional loop that must execute zero or more

times, then you should use a WHILE loop. If you are writing a loop that must execute one or

more times, then you should use an UNTIL loop.

Since UNTIL depends on a logical expression, some part of the logical expression must change

during the execution of the loop to cause the logical expression to become true at some point.

Otherwise, the loop will never terminate.

Here is an example of a simple UNTIL loop:

COPY 0 A 'Give A the starting value zero

UNTIL A = 3 'Repeat until A becomes 3

 PRINT A ' print A

 LET A = 1 + A ' Add 1 to A and put the result in A

END

In this example, A changes its value on each cycle of the loop, increasing by 1 each time. The

command ADD A 1 A causes A to be given a new value that is its old value plus 1. Eventually A

equals three and the UNTIL loop will terminate. Here is the output of the program:

A: 0.0

A: 1.0

A: 2.0

You might be surprised to find that the following example is an infinite loop:

COPY 0 A

UNTIL A = 0

 PRINT A

 LET A = 1 + A

END

In this program, the variable A is set to zero, then the loop is entered. The loop doesn’t evaluate

its test until after it executes its first cycle, so it prints the current value of A, which is zero, then

it increments A making it 1. Now, when the loop proceeds to evaluate the logical expression test

it finds that A is not zero, so it goes through the loop again. The value of A will never be zero, so

the loop will never terminate. WARNING: If you run this program in Statistics101, the loop is so

“tight” that you might not be able to abort the program. If that happens, you will probably have

to kill the Statistics101 program using the Task Manager (Windows) or its equivalent in the Mac

or Unix. Instead of running the program at full speed you can use the debugger to step through it.

Language Basics

78

Nesting Commands

The five commands, REPEAT, FOREACH, IF, UNTIL, and WHILE, can contain each other.

This is called “nesting,” because one compound command is “nested” within another. Each END

command belongs to the closest previous un-END-ed compound command. To make the concept

concrete, here’s the skeleton of a program that has several nested commands.

...

REPEAT 1000

 ...

 IF A <= B

 ...

 WHILE C > D

 ...

 END

 ...

 END

 ...

END

...

The WHILE command and its included commands (represented by the “...”) are nested, along

with other commands, within the IF command, which itself is nested within the REPEAT

command. Almost every program example that I will discuss in this document or that you will

write on your own will make use of nested compound commands.

Here is a simple real example using nested FOREACH loops to print out the permutations

possible for rolling three die.

'List all the possible results (permutations) for rolling 3 die.

'For example, these six cases would be considered different and

'therefore each one would be printed:

'(1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1)

COPY 1,6 die

FOREACH face1 die

 FOREACH face2 die

 FOREACH face3 die

 COPY face1 face2 face3 roll

 PRINT roll

 END

 END

END

The first few results follow:

roll: (1.0 1.0 1.0)

roll: (1.0 1.0 2.0)

roll: (1.0 1.0 3.0)

roll: (1.0 1.0 4.0)

roll: (1.0 1.0 5.0)

roll: (1.0 1.0 6.0)

roll: (1.0 2.0 1.0)

. . .

Extending this example to show a more complex case, here is a way to show all the

combinations that three dice can produce:

'List all the possible results of rolling 3 die without regard to

Language Basics

79

'their order (combinations). For example, these six cases would

'be considered equal and therefore only one would be printed to

'represent them all: (1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1)

FOREACH face1 1,6

 FOREACH face2 face1,6

 FOREACH face3 face2,6

 COPY face1 face2 face3 roll

 PRINT roll

 END

 END

END

Study carefully the differences between the two programs to understand how this second one

works. Here are the first few results for comparison:

roll: (1.0 1.0 1.0)

roll: (1.0 1.0 2.0)

roll: (1.0 1.0 3.0)

roll: (1.0 1.0 4.0)

roll: (1.0 1.0 5.0)

roll: (1.0 1.0 6.0)

roll: (1.0 2.0 2.0) '<-- First difference between outputs

. . .

The BREAK Command

The BREAK command forces immediate exit from the innermost REPEAT, FOREACH,

UNTIL, or WHILE loop enclosing the BREAK command. Control will jump to the command

following the innermost loop’s END command. Any loop enclosing the innermost loop will

continue as if the innermost loop had completed normally.

For example, suppose you wanted to know on average how many random trials it would take to

choose a given number, say 5, with replacement, from a list of all the integers between 1 and 10.

The process to simulate is to create a list of the 10 numbers, select one at random with

replacement. If that is not the desired number, select again, keeping track of how many trials it

takes you to get the number. Here is a program to do that, using the BREAK command to exit

the otherwise infinite WHILE loop.

DATA 1,10 numbers

COPY 5 desiredNumber

REPEAT 10000

 COPY 0 counter

 WHILE 1 = 1

 LET counter = 1 + counter

 SAMPLE 1 numbers theSample

 IF theSample = desiredNumber

 SCORE counter trials

 BREAK

 END

 END

END

MEAN trials meanCounts

MEDIAN trials medianCounts

PRINT meanCounts medianCounts

HISTOGRAM percent binsize 1 trials

Language Basics

80

The WHILE 1 = 1 command is an endless loop because 1 is always equal to 1. The only way out

is to use the BREAK command to force exit when the desired condition is met. When the

BREAK executes, the WHILE loop terminates, but the REPEAT loop does not. It continues just

after the WHILE loop’s END command and then restarts the WHILE loop for the next trial.

I used the infinite loop in the above example program just to demonstrate the BREAK command.

Try the following exercises:

Revise the program, using a non-infinite WHILE command and without the BREAK command.

Revise the program using a non-infinite UNTIL command.

Revise the program, using either WHILE or UNTIL to select the sample without replacement

and compare and explain the differences in the result.

You can see my solutions at http://www.statistics101.net/selectingNumbersFromAList.html.

Program Clarity and Readability

When you write a simulation program in the Resampling Stats language or any computer

language, it is a good idea to write it so that if possible, it explains itself to the reader with very

few comments. The simplest contributor to readability is to indent the contents of the block

commands, REPEAT, FOREACH, WHILE, UNTIL, IF, and NEWCMD. This was described

earlier. Statistics101 will perform the indentation automatically if you click one of the

indentation icons in the toolbar or press Ctrl-I, Ctrl-Shift-I, or Ctrl-Alt-I.

Another helpful readability practice is to choose meaningful names for the variables you use in

your programs. Meaningless names like “A1” or “xyz” are not helpful. If you use such names,

you will have to “decode” them in your mind when you are writing or reading the program. The

examples I provide throughout this document use variable names that make clear the meaning of

the variable’s contents.

A third practice that helps readability is to avoid or minimize the use of arbitrary code numbers

in your program. You do this by creating meaningful names, called Named Constants, that you

use in place of numbers. They are called constants because once you have created them you can’t

change their values. There are two situations where you might like to use names instead of

numbers. The first is the case where you would otherwise have to use an arbitrary code number

such as 1 for “heads” and 2 for “tails.” The second is the case where you have a meaningful

number that you want to give a name to, such as giving this number, 3.141592654, the name

“pi.” A Named Constant created for the first case is called an “enum,” short for “enumerator.”

Named Constants created for the second case are called “Named Values.”

Named Constants

As there are two kinds of Named Constants, there are two commands that you use to create them.

To eliminate code numbers from your program altogether and just use names as if the name itself

were a constant in the program, you would use the ENUM command. The constants you define

with the ENUM command are called “enumerators” or “enums.” You can assign a name to a

constant number with the CONST command. The constants you define with the CONST

command are called “Named Values.” There is a third command, NAME, which combines the

function of both commands. The next few paragraphs will describe these three commands in

detail.

http://www.statistics101.net/selectingNumbersFromAList.html

Language Basics

81

The rules for forming the names of constants are the same as the rules for variable names, which

were described earlier in section Names.

Enums

Consider a simulation that involves flipping coins. In the original Resampling Stats language,

you would have used a command like this next one to create the “coin”:

COPY 1 2 coin ' 1 = heads, 2 = tails

This is okay except that you’ve introduced some codes (1=heads and 2=tails) whose meaning

you need to explain with comments and to keep in mind as you write or read the program. Using

enums, you don’t need to create codes. You just use the enums as if they were numbers. A

typical example using enums for a simulation that involves “flipping coins” might be:

ENUM heads tails

COPY heads tails coin

or,

ENUM heads tails

COPY (heads tails) coin

Either creates a “coin” vector that contains the values “heads” and “tails.” Note that by using the

ENUM command, heads and tails become actual constants in the program. They do not have a

numerical value. Their name is their value. Statistics101 will not allow your program to change

them. If you then print coin using the next command,

PRINT coin

you will see the result:

coin: (heads tails)

You might use these in a program like this next one that computes the probability of throwing

exactly two heads in three tosses of a coin. This is the same program I used in the section The

Resampling Method, but revised to use enums:

ENUM heads tails

COPY heads tails coin

COPY 1000 numberOfTrials

REPEAT numberOfTrials

 SAMPLE 3 coin trial ' flip coin 3 times

 COUNT trial = heads headcount

 SCORE headcount results

END

COUNT results = 2 successes

LET probability = successes / numberOfTrials

PRINT probability

Enums can be used almost anywhere in the Resampling Stats syntax that a literal number (such

as 1 or 1.234) can be used. The exception is that enums, since they do not have a numerical

value, cannot be used in arithmetic commands such as ADD, SUBTRACT, etc. Therefore, if you

have

ENUM sun mon tue wed thu fri sat

ENUM jan feb mar apr may jun jul aug sep oct nov dec

Then the following are legal commands:

Language Basics

82

COPY mon,fri workdays

COPY (sat sun) weekend

COPY jan,dec year

COPY 30#sun monthOfSundays

But these will cause an error message:

COPY tue,jun jumble 'ERROR: types of tue and jun don’t match

ADD mon tue daySum 'ERROR: can’t do arithmetic operations on enums

The first line is an error because the lower limit (tue) and the upper limit (jun) were created by

different ENUM commands. All the enums in the same ENUM command are considered to be of

the same category or “type”
3
. Enums from different ENUM commands are forbidden to be used

as just shown because such a sequence specification is logically meaningless. There can be no

such sequence as “Tuesday through June.”

The second line is an error because the enums have no numeric value and therefore cannot be

added.

As you saw earlier, the PRINT command will print Named Constants out as names, not numbers.

Therefore, given the above ENUM and COPY commands, this command:

PRINT workdays weekend year

will produce this output:

workdays: (mon tue wed thu fri)

weekend: (sat sun)

year: (jan feb mar apr may jun jul aug sep oct nov dec)

Consider another easily understood example problem. The problem is “What is the probability

that from a shuffled poker deck the first five cards will contain two clubs and three hearts?” (Not

“the two of clubs” and “the three of hearts.”) Here is a solution:

ENUM clubs spades hearts diamonds

COPY 13#clubs 13#spades 13#hearts 13#diamonds deck

COPY 100000 numberOfTrials

COPY 0 successCount

REPEAT numberOfTrials

 SHUFFLE deck shuffledDeck

 TAKE shuffledDeck 1,5 hand

 COUNT hand = clubs clubCount

 COUNT hand = hearts heartCount

 IF clubcount = 2 AND heartCount = 3

 LET successCount = 1 + successCount

 END

END

LET probability = successCount / numberOfTrials

PRINT probability

This program is completely self-documenting. There are no arbitrary codes to remember and no

need for comments. The statement of the problem and the program itself are sufficient.

3
 The ENUM, CONST, and NAME commands have an optional keyword, type, that allows you to name the type

created by the command. Multiple commands with the same type name behave as if they were created by only one

command. You can find more information about this option in the Help documentation for the NAME command.

Language Basics

83

Named Values

If you want to assign your own code values to Named Constants, you can use the CONST

command. You might want to do this where, as in the case of card hands, the cards might have

special values and you want to use the names to represent the card value also. The next line

exemplifies this case.

CONST (1 2 3 11 12 13) ace deuce trey jack queen king

This command assigns 1 to ace, 2 to deuce, etc. The first argument must be a literal vector and it

must have one value for each of the subsequent names. Otherwise, you will get an error message.

The first argument is allowed to be a sequence (e.g., 1,6) or a multiple specification (e.g., 6#1),

although the latter would rarely be meaningful in the context of the CONST command since it

gives the same value to all the names.

Of course, you can use the CONST command to give names to mathematical constants:

CONST (2.718281828 3.141592654) e pi

Numerical commands (such as ADD, LOG, SIN, etc.) operate on Named Values using their

assigned values. If you had a card hand like the following,

COPY (ace jack king 4 6) hand

you could get its value like this:

SUM hand handTotal 'Sum all elements of hand and put result in handTotal

PRINT handTotal

The NAME command

The NAME command combines the functionality of both ENUM and CONST commands. The

NAME command can create enums or Named Values, depending on the syntax you use. In early

versions of Statistics101 the NAME command was the only way to create Named Constants. The

ENUM and CONST commands were introduced to emphasize the difference between the two

types of constants but if you prefer, you can still use the NAME command. Here are examples of

ENUM and CONST commands with their equivalent NAME commands:

ENUM mon tue wed thu fri sat sun 'These two commands are equivalent

NAME mon tue wed thu fri sat sun

and

CONST (1 2 3 11 12 13) ace deuce trey jack queen king

NAME (1 2 3 11 12 13) ace deuce trey jack queen king 'These are equivalent

Most of the time, you will find the use of Named Constants intuitive. But there are cases where

their behavior might not be what you expect. The next three subsections describe the details of

the interactions between Named Constants and other features of the language so that you will

understand the subtleties in case you run into an example that doesn’t match your intuition. You

can skim or skip these on first reading, but remember that they are here and come back to read

them if you run into any surprises using Named Constants.

Named Constants and Sequences

Named Constants can be used in sequence specifications. You have already seen examples of

this earlier in this document. The rule is: If you specify a sequence of Named Constants, the

Language Basics

84

sequence will be in the same order that you defined them in the command that created them. Any

values you may have attached to them do not affect the sequence order. Here is an example that

puts the weekdays in an odd order just to demonstrate the rule:

CONST (2 1 3 5 4) tue mon wed fri thu 'Odd order for demo purposes

COPY mon,fri weekdays

PRINT weekdays

Result:

weekdays: (mon wed fri)

As you can see, with a lower limit of mon and upper limit of fri, you get those limits plus

whatever names are between them in the CONST command. The assigned values do not affect

the order. If the limits are reversed, as shown here:

CONST (2 1 3 5 4) tue mon wed fri thu 'Odd order for demo purposes

COPY fri,mon weekdays

PRINT weekdays

You get this result:

weekdays: (fri wed mon)

Named Constants and Sorting Order

Since Named Constants can appear as elements of vectors along with normal numbers, the

question arises as to how such vectors, called “mixed vectors” will sort. Here are the rules by

which the sorting order is determined.

If your vector contains only enums (i.e., Named Constants to which you haven't explicitly

assigned a value), the elements will be sorted into the same order in which they appeared in their

respective ENUM or NAME commands. For example:

ENUM tue mon wed fri thu 'Odd order for demo purposes

COPY tue,thu weekdays

SORT weekdays weekdaysSorted

PRINT weekdaysSorted

Result:

weekdaysSorted: (tue mon wed fri thu)

If the vector contains only Named Values (i.e., Named Constants to which you have explicitly

assigned a value), they will be sorted into order based on their assigned values, irrespective of

their order in their CONST or NAME command. For example:

CONST (2 3 1 5 4) tue wed mon fri thu 'Odd order for demo purposes

SORT tue,thu weekdays

PRINT weekdays

Result:

weekdays: (mon tue wed thu fri)

If you SORT a mixed vector, which is a vector that contains both numbers and Named

Constants, the Named Constants will fall into place based on the rules just discussed.

Specifically, enums will come first (assuming ascending order) and Named Values and numbers

will be positioned according to their values.

Language Basics

85

ENUM jan feb mar

ENUM mon tue wed

CONST (1 2 3) ace deuce trey

COPY mon,wed ace,trey jan,mar 1,3 mixedVector

SORT mixedVector sortedMixedVector

PRINT mixedVector sortedMixedVector

Which produces this result:

mixedVector: (mon tue wed ace deuce trey jan feb mar 1.0 2.0 3.0)

sortedMixedVector: (jan feb mar mon tue wed ace 1.0 deuce 2.0 trey 3.0)

Notice that the enums, having no assigned values, were grouped first with their siblings from the

same ENUM command, and then sorted with the others of their group, and then the sorted

groups were placed in the same order as their two NAME commands. Also, these enums were

placed at the head of the vector.

The Named Constants that had assigned values are grouped with the numbers and then sorted

according to their values.

Named Constants and Comparison Tests

Enums and Named Values behave differently in comparison tests. The difference is because

enums do not have numeric values and therefore cannot be equal to or greater than or less than

anything that does have a numeric value.

Enums compared with Enums, Named Values, and Numbers

An enum is equal only to itself. If an enum is compared for equality with a number or any other

named constant than itself, the result will be false. An enum is less than another enum of its own

type if it is earlier in its ENUM or NAME command than the other. An enum is greater than

another of its own type if it is later in its ENUM or NAME command than the other. Any other

comparison (such as a enum vs. a Named Value or vs. a Number or vs. an enum from a different

ENUM or NAME command) yields false.

Named Values compared with Named Values and Numbers

A Named Value is equal to itself. If a Named Value is compared with another Named Value of

the same type or with a number, then the result of the comparison is the result of the comparison

of their values. If a Named Value is compared with a Named Value of a different type, they can

never be equal even if they have the same assigned value. But any Named Value is less than any

other Named Value that is created by a different CONST or NAME command later in the

program.

The table on the next page shows some example comparisons that will help clarify the above

rules, based on the following commands.

ENUM mon tue wed thu fri

ENUM jan feb mar apr may jun jul aug sep oct nov dec

CONST (1 2 3 10 11 12) ace deuce trey jack queen king

CONST (1 2) heads tails

Comparison Result of

Comparison

Reason

Language Basics

86

mon = mon

mon < mon

true

false

An enum is always equal to itself.

mon = jan

mon < jan

mon > jan

mon <> jan

false

false

false

true

mon and jan are different types because they are defined in

different ENUM commands. Any comparison except “not equal”

results in false.

mon = 1

mon < deuce

mon <>

deuce

false

false

true

An enum has no numerical value, so any comparison (except for

“not equal”) with a number or Named Value results in False.

ace < deuce

trey > ace

ace = trey

true

true

false

Named values of the same type (i.e., defined by the same CONST

or NAME command) can be validly compared.

ace = heads

ace <> heads

ace < tails

false

true

false

Named values of different types (i.e., defined by different CONST

or NAME commands) can only be “not equal.”

ace = 1

heads < 2

heads <> 1

true

true

false

Named values can be validly compared with numerical values.

There are some predefined constants that you can use in your programs by INCLUDEing the

files that define them. The files are in the lib directory:

The file mathConstants.txt defines the constants pi, e, loge10, degToRad, and

radToDeg. The latter two are useful to convert from degrees to radians or the reverse by

multiplication. To make all these math constants available to your program, just add the

following command at the start of your program:

INCLUDE "lib/mathConstants.txt"

In earlier versions (prior to version 3.1) of Statistics101, there was a library file called

logicalConstants.txt that defined the constants true, and false. To use the constants, the file

had to be INCLUDEd at the beginning of a program. For versions 3.1 and newer of Statistics101,

those constants are predefined automatically and no INCLUDE file is needed. They are defined

as if they had been created by these commands:

NAME (0 1) false true

GLOBAL false true

Language Basics

87

That definition allows you refer to them as names or numbers in comparisons. Examples of their

use can be found in the files lib/isSequenceCommand.txt and lib/chooseTest.txt.

 If you want to access all constants defined in the library, you can INCLUDE just the file

constants.txt, which in turn INCLUDEs all constant-defining files in the library. (As of version

3.1, it only includes the lib/mathConstants.txt file.) Here is a command that makes both math and

any other constants available:

INCLUDE "lib/constants.txt"

Subroutines: User-defined Commands

A subroutine is a named set of commands that is treated as a unit. Using a subroutine can make a

program shorter and easier to write and to understand. A subroutine is useful when

You have to perform the same computation in more than one place in a single program.

You have a computation that performs a generally useful function that can be used in many

different programs.

You want to condense a complicated computation to one line to simplify the logic of a program.

There are three aspects of subroutines to understand: the declaration, the definition, and the

invocation. The declaration introduces the subroutine’s name and argument list into a program,

the definition provides the commands that the subroutine should execute, and the invocation calls

for the execution of the subroutine at a certain point in your program.

Subroutine Declaration

A subroutine declaration introduces the subroutine’s name and argument list into your program.

A declaration does nothing more than notify the Statistics101 program that a subroutine by that

name and with those arguments will be used later in the user’s program. There are two ways to

declare a subroutine. The first, but least common, is to use the DECLARE command. DECLARE

takes one or more arguments. Its first argument is the name of the subroutine. Any other

subsequent arguments are arguments of the subroutine itself. DECLARE is only needed when for

some reason you must invoke your subroutine in your program text before you have defined the

subroutine. The second and by far most common way to declare a subroutine happens

automatically as a byproduct of the NEWCMD command.

Subroutine Definition

In Statistics101 a subroutine is declared and defined using the NEWCMD command. The

NEWCMD command declares the subroutine and the rest of the commands up to the matching

END command complete the subroutine’s definition.

NEWCMD takes one or more arguments. Its first argument becomes the name of the subroutine.

Any other subsequent arguments become arguments of the subroutine itself. The subroutine's

arguments are used to pass data into and/or out of the subroutine.

Normally, a subroutine's definition should precede its invocation in the program text. A

subroutine may invoke one or more other subroutines as long as the invoked subroutines are

declared prior to the invocation. If a subroutine is invoked before it is declared an error message

will be forthcoming and the program will fail to execute. Therefore, it is good practice to put all

Language Basics

88

the subroutines at the top of your program text, following any Named Constants and GLOBAL

declarations.

Here's the definition of a simple subroutine that will copy the smaller of its two input arguments

into its result argument:

NEWCMD MINIMUM number1 number2 result

 IF number1 < number2

 COPY number1 result

 ELSE

 COPY number2 result

 END

END

In this example, NEWCMD has four arguments. The first, MINIMUM, is taken to be the name of

the subroutine. Its case doesn’t matter, but since it will be used later as if it is a command, it is

shown here in upper case. The rest of the arguments, number1, number2, and result indicate

that subroutine MINIMUM requires three arguments. These latter arguments are called “dummy” or

“formal” arguments because they only have meaning within the subroutine definition. They will

be replaced with actual arguments, which may have different names, when the subroutine is

invoked at run time. A subroutine may be declared to have a fixed or variable number of

arguments, including none, and the arguments may pass values into and/or out of the subroutine.

In this case, number1 and number2 pass data into the subroutine while result passes data out.

The naming conventions for the subroutine's name and arguments are the usual Statistics101

naming rules, and typographical case does not matter.

Visibility of Names

Dummy variable names are only valid within the subroutine in which they are declared. Any

variable created inside a subroutine that is not a dummy variable is called a “local” variable. Any

Named Constant that is created within a subroutine is called a local constant. (See the section

Program Clarity and Readability of this document for more information on Named Constants)

Local variables and constants are accessible only within the subroutine; they are not visible

outside the subroutine that created them.

Any variable (or constant) created outside a subroutine is called a “non-local” variable (or

constant). Non-local variables or constants may be referred to directly by name anywhere in the

program after they are defined, except within a subroutine. The subroutine is like a black box.

Nothing inside the box can see out and nothing outside can see in. With one exception, the only

way in or out is via the subroutine's arguments. The exception is that variables or Named

Constants declared outside a subroutine may be made visible within all subroutines by using the

GLOBAL command. Non-local vectors listed as arguments to the GLOBAL command become

“globals.” Global constants and variables are accessible anywhere in the program, including

inside subroutines, after the point of their declaration as globals in the text.

A dummy variable's name may be the same as that of a global or non-local vector, but it does not

refer to that outside vector unless the global or non-local variable is put in the dummy's position

during an invocation. A couple of examples will make this clearer. Suppose you have a program

that includes some commands like this:

GLOBAL A

...

Language Basics

89

NEWCMD MYSUB B

 ...

 COPY A B 'Refers to global A

 ...

END

...

In the above subroutine, the A in the COPY command refers to the global variable, A. Now, if

you have a program that includes the following structure,

GLOBAL A

...

NEWCMD MYSUB A 'Dummy A hides global A

 ...

 COPY A B 'Refers to dummy A

 ...

END

...

the A in the COPY command refers to the dummy variable, A. In other words, the dummy

variable, A, hides the global variable, A.

Passing Data into and out of a Subroutine

Here is another simple example to illustrate several points. Suppose you wanted a subroutine to

compute the log base 16 of a number. The formula is log16(n) = loge(n)/loge(16). Here is one way

to write the subroutine:

'Subroutine to compute the base 16 log of the elements of a vector

NEWCMD LOG16 input result

 LOG 16 logE16 ' log base e of 16 (a constant)

 LOG input logInput ' log base e of input

 DIVIDE logInput logE16 result

END

Within the subroutine, logInput is used to hold an intermediate result. Since logInput is not

listed in the NEWCMD command as a dummy variable, it is a local variable. As such, it is not

accessible outside the subroutine by name.

The first line of the subroutine (LOG 16 logE16) is computing a constant. Since it is inside the

subroutine, it will be recomputed every time the subroutine is invoked, which would be

inefficient if the subroutine will be called many times. There are four ways to avoid recomputing

the constant. I will illustrate those four ways partly to demonstrate some of the different options

you have when writing a subroutine and partly to show how the GLOBAL and NAME

commands interact with subroutines.

One way is to compute the constant outside the subroutine and declare it global, like this:

LOG 16 logE16 ' log base e of 16 (a constant)

GLOBAL logE16

'Subroutine to compute log base 16

NEWCMD LOG16 input result

 LOG input logInput ' log base e of input

 DIVIDE logInput logE16 result

END

Language Basics

90

A second way is to use a Named Constant outside the subroutine, as in the following:

CONST 2.772588722239781 logE16 ' log base e of 16

GLOBAL logE16

'Subroutine to compute log base 16 of input

NEWCMD LOG16 input result

 LOG input logInput ' log base e of input

 DIVIDE logInput logE16 result

END

Named Constants are created once, just before the program is run, so they have minimal “cost” at

runtime. If the constant logE16 is not needed outside the subroutine, it may be declared within

the subroutine. This is the third way, as illustrated here:

'Subroutine to compute log base 16

NEWCMD LOG16 input result

 CONST 2.772588722239781 logE16 ' log base e of 16

 LOG input logInput ' log base e of input

 DIVIDE logInput logE16 result

END

 A fourth way to avoid recomputing a constant is to pass the constant into the subroutine as an

argument:

'Subroutine to compute log base 16

'logE16 is the constant Log(16) base e, to be passed in.

NEWCMD LOG16 logE16 input result

 LOG input logInput ' log base e of input

 DIVIDE logInput logE16 result

END

The above examples illustrate four different ways of getting information into a subroutine. In

summary, to pass a variable into a subroutine, the preferred way is to pass it as an argument. The

non-preferred way is to declare it GLOBAL and refer to it directly inside the subroutine. To pass

a constant into a subroutine, the preferred ways are either define it (using CONST or NAME)

within the subroutine if possible, or define it (using CONST or NAME) outside the subroutine

and declare it to be global (using the GLOBAL command).

Had I not been using the subroutine to illustrate the above points, I probably would have written

it more straightforwardly in the following way:

'Subroutine to compute log base 16

NEWCMD LOG16 input result ?"Subroutine to compute log base 16"

 LET result = log(input) / 2.772588722239781

END

Optional Arguments

Many of the Statistics101 commands, such as COPY or ADD, take a variable number of

arguments. Sometimes you might want to write a subroutine that is capable of accepting a

variable number of arguments like one of those commands. If so, after any required dummy

arguments on your NEWCMD command line, you would add a number-sign (#). If this code is

present it indicates that the subroutine's invocation is allowed to have an unspecified number of

additional, or “optional” arguments. If the # is not present, then the invocation must have exactly

as many arguments as the NEWCMD command that defines the subroutine. The # mark may be

Language Basics

91

followed by a double-quote-enclosed string which is a comment to describe the optional

argument list. The comment will appear in the Syntax Help Bar near the top of Statistics101's

main window. If you omit the comment, the default comment “{variable}” will appear in the

Syntax Help Bar.

Here is an example of a subroutine definition that calls for one required argument and some

optional arguments.

NEWCMD EXAMPLESUB inVector #"{inVector} resultVector"

 . . .

END

The argument inVector is required when EXAMPLESUB is invoked because the argument is

before the # sign. The # sign indicates to the Statistics101 compiler that the subroutine

EXAMPLESUB may be invoked with some unspecified number of optional arguments. The

optional comment in quotes after the # is to describe what kind and how many optional

arguments the subroutine expects. In this example, following the syntax conventions described in

the section Command Syntax Descriptions, the comment tells the human reader that the

subroutine expects zero or more input vector (inVector) arguments and one result vector

argument (resultVector). The comment will be displayed in the syntax help bar but is

otherwise ignored by the Statistics101 compiler.

Inside a subroutine definition the dummy variables are referred to by their names. In the case of

the optional variables (those allowed by the # mark), those are referred to by number using two

other commands: ARGCOUNT, and GETARG. ARGCOUNT tells you how many optional

arguments are in the invocation. GETARG returns one of the optional arguments, chosen by

number. Here is an example of a subroutine showing the use of ARGCOUNT and GETARG.

'Subroutine to do an ascending coordinated sort, in place, of

'two or more vectors on the first vector (keyVariable) as the key.

'All vectors must be the same length.

NEWCMD SORTCOORD keyVariable #"variable {variable}" \

 ?"Coordinated sort, in place, of two or more vectors"

 ARGCOUNT numberOfArgs

 IF numberOfArgs > 0

 TAGSORT keyVariable tags

 TAKE keyVariable tags keyVariable

 FOREACH argNum 1,numberOfArgs

 GETARG argNum arg

 TAKE arg tags arg

 END

 ELSE

 DEBUG "ERROR: Incorrect number of arguments in SORTCOORD."

 END

END

Subroutine Invocation

The third aspect to writing subroutines is their invocation. A subroutine is invoked simply by

using the subroutine's name as if it were a normal Statistics101/Resampling Stats command and

listing the appropriate actual arguments in place of the dummy arguments. Here are two

invocations of subroutine MINIMUM, which was defined in the earlier section, Subroutine

Declaration:

Language Basics

92

MINIMUM 5 10 result

MINIMUM girls boys smallerGroupSize

The first example is simply to show that literals can be used as inputs. The second shows the use

of variables for input. Notice that the names of the arguments in the invocation do not have to

match those of the dummy variables in the declaration. The “actual arguments,” girls, boys,

and smallerGroupSize will take the place of the dummy variables, number1, number2, and

result. The substitution is made strictly on the basis of position, not name. Thus, the first actual

argument will be substituted for the first dummy argument, the second for the second, and so on.

Here is another example, showing the last of the LOG16 subroutines defined earlier along with a

main program that invokes it. You can cut this program out, paste it into Statistics101's edit

window and run it.

'Subroutine to compute log base 16

NEWCMD LOG16 input result

 LOG input logInput ' log base e of input

 DIVIDE logInput 2.772588722239781 result

END

'Main program using the subroutine

COPY 1,16 vec

LOG16 vec log16vec 'subroutine invocation

PRINT table vec log16vec

The main program creates a vector named vec containing the numbers from 1 through 16, then

invokes the LOG16 subroutine to compute the base 16 log of all of vec's elements and put the

results in a vector called log16vec. All the other above definitions of the LOG16 subroutine,

except the next-to-last (repeated just below), can run with this same main program. The next-to-

last one would work with a main program like the following, which defines the necessary

constant to be passed in.

'Subroutine to compute log base 16

'logE16 is the constant Log(16) base e, to be passed in.

NEWCMD LOG16 logE16 input result

 LOG input logInput ' log base e of input

 DIVIDE logInput loge16 result

END

'Main program using the subroutine

COPY 1,15 vec

LOG 16 logE16 'compute constant log base e of 16 once

LOG16 logE16 vec log16vec 'subroutine invocation

PRINT vec log16vec

Subroutine Annotations

While it is creating the subroutine from the NEWCMD command, Statistics101 will

automatically collect the subroutine name and all its arguments for use as help text in the Syntax

Help Bar. For example the earlier MINIMUM subroutine definition, repeated here for

convenience:

NEWCMD MINIMUM number1 number2 result

 IF number1 < number2

 COPY number1 result

Language Basics

93

 ELSE

 COPY number2 result

 END

END

would cause the following to appear in the Syntax Help Bar when the cursor is on a line starting

with the subroutine’s name:

MINIMUM number1 number2 result

The help text serves as a reminder of the subroutine’s arguments when you are writing a program

using a subroutine.

In addition, there are two kinds of “annotations” that you can manually add to your subroutines

to make them easier to use. These annotations further integrate your subroutines into the

Statistics101 help system. The first allows you to add a one-line description of the subroutine

that will appear in the Description Help Bar just like the one-line descriptions for the built-in

commands. The second allows you to specify one or more categories for the subroutine. These

cause the subroutine’s name to be included in the Statistics101 category menus and in the

category folders in the Subroutine Browser, which is described below in the section titled The

Subroutine Browser.

Subroutine Description Annotation

NEWCMD accepts an optional one-line description that will appear in the Description Help Bar

(just under the Syntax Help Bar) when the cursor is on a line starting with the subroutine’s

name. The subroutine’s description is introduced by a question mark, “?” (as a symbol for

“help”). The description must be enclosed within quotation marks. The description may be any

length but must be all on one line. Here is the above subroutine revised to add a description (the

description is in boldface):

NEWCMD MINIMUM number1 number2 result ?"Returns the minimum of two numbers"

 IF number1 < number2

 COPY number1 result

 ELSE

 COPY number2 result

 END

END

Note, though, that the help texts won’t appear until after Statistics101 has performed a syntax

check. The syntax check is performed when you click on the syntax check button on the toolbar,

or choose the Run>Check Program Syntax menu, or use the Control-K keyboard shortcut, or

when you run the program.

Subroutine Category Annotation

You can place a subroutine into one or more categories using the “@” sign followed by a

category name. If the category name, such as “financial,” is a single word, it doesn’t need to be

enclosed in double quotes. If it is multiple words, such as “vector operations,” then it must be

enclosed in double quotes. Upper and lower case category names are equivalent.

The reason for assigning categories to a subroutine is so that the subroutine can be listed along

with others of the same category in the “Commands and Subroutines By Category” menu list of

the Edit menu, in the Edit Window popup menu, and in the Subroutine Browser. Statistics101

Language Basics

94

builds the category lists based on the subroutines it finds in the lib directory. If you are not going

to save your subroutine in lib or in your default subroutine folder (set via menu:

Edit>Preferences...>General tab), then there's no need to use this feature.

If you assign a category that is not currently in the menus’ lists, that category will be added to the

menus and the Subroutine Browser. If you don’t assign a category, the subroutine will be

assigned the default category, “other.” If you assign more than one category, the subroutine’s

name will appear in each category’s list in the menus and the Subroutine Browser.

If you want a subroutine’s name to not appear in the category menu, you can use the tag

“@HIDE”. If that tag is used, then all other tags on the same NEWCMD line are ignored. The

subroutine's name will, however, still appear in the “Subroutines From Lib By Name” menu and

in the Subroutine Browser.

Here is an example of a subroutine definition extended to assign the subroutine to two categories.

NEWCMD MINIMUMS inVec1 inVec2 result @math @"vector operations" \

 ?"Copies minimum elements at each position into result."

 . . .

END

Note that the category annotations, if present, must precede the “?” description annotation.

Remember that the “\” indicates that the command is continued to the next line.

Subroutine Libraries

You’ll find a “library” of subroutines and constant declarations in the directory named lib in the

Statistics101 installation directory. Read the Read_Me.html file in the lib directory for a brief

introduction to the available subroutines. These subroutines provide functionality that will save

you time with many common problems.

All the subroutines that are in the lib directory will automatically be included in the “Subroutines

From Lib By Name” and “Commands and Subroutines By Category” sub-menus in the menu

bar’s Edit menu and the edit window's popup menu. Those menus have two options:

 If you select a subroutine from either menu, the file containing it will appear in the help

browser so you can read its descriptive comments and the text of the subroutine itself.

 If you hold down the SHIFT key while making a selection from either of those sub-

menus, the name of the subroutine (or command) will be inserted in the Edit window at

the cursor, and an INCLUDE command will be added to the top of the program if it is

needed.

Statistics101 will also create a directory with the name “ResamplingStatsSubroutines” in your

user home directory the first time that Statistics101 runs. You can use that as a convenient place

to store your own subroutines for easy access. Or, you can change the default to a directory of

your choosing by opening the Edit>Preferences...>General tab and entering the directory’s path

in the “Default folder for my subroutines:” text box.

The subroutines that you store in your default subroutine directory will not be included in the

popup menu but they will be scanned by Statistics101 for inclusion in the Subroutine Browser

and to collect the help annotations (those introduced by the “?” keyword) for use in the help bar.

Language Basics

95

Your subroutines will also be included in the Command/Subroutine Index

(Help>Command/Subroutine Index or press the F3 key).

If you have some subroutines or even some constants that you use often, you can put them in one

or more files in your default subroutine directory and then use the INCLUDE command to bring

them into any other program that needs them.

The INCLUDE command

The INCLUDE command lets you use a subroutine in more than one program without having to

copy it into each program. The INCLUDE command inserts files named in its argument list into

the program text at the location of the INCLUDE command. The files named for inclusion

should contain subroutines and/or constant definitions. The result is that a new expanded

program is created temporarily by Statistics101, consisting of the original file with each of its

INCLUDE statements replaced by the contents of all the files listed in its argument list. The full

program with all the nested included files expanded can be viewed and debugged in the Debug

tab of the Program Panel.

The INCLUDE command takes one or more file names as arguments. Each file name must be

enclosed between double quotes. There must be at least one space between adjacent file names.

You can use the INCLUDE command to insert any subroutine file from the library into your own

simulations, like this one that brings in some subroutines that manipulate the elements of vectors:

INCLUDE "lib/vectorCommands.txt"

Tip: If the auto-include feature is enabled (menu: Edit>Preferences...>Editor>Enable Auto-

INCLUDE) and you invoke a subroutine that is defined in the lib or your default subroutine

directory, then during syntax check Statistics101 will automatically insert the appropriate

INCLUDE command at the top of your program.

Tip: If you want to include a file but can’t remember its name or don’t want to type it, you can

select the Edit>Include Lib File(s)... menu item (or press Ctrl-U). It will produce an Open File

dialog that lists all the files in the lib directory. When you select one or more files and click the

Open button, Statistics101 will insert an INCLUDE command for each of your selected files at

the top of your program.

Refer to the Statistics101 help for more details on how to use the INCLUDE command.

The Subroutine Browser

All the subroutines that are included with Statistics101 have descriptive comments just before

each NEWCMD command explaining how to use the subroutine. You can read these comments

to learn what each subroutine is for and how to use it, but to do that, you need to know what file

the subroutine is in and then open that file and find the subroutine within it. The Subroutine

Browser makes it easy to find any subroutine in lib and your default subroutine folder (defined in

Edit>Preferences) along with its description and code.

There are two ways to access the Subroutine Browser. The first is via the Window>Show

Subroutine Browser menu in the Statistics101 main window's menu bar. The second is via the

popup menu that appears when you right-click in the Statistics101 Edit window. If you select any

subroutine name from that popup menu, the Subroutine Browser will appear and will display that

subroutine's file scrolled to that subroutine's NEWCMD command.

http://www.statistics101.net/userguide/UserGuide96.html

Language Basics

96

Refer to the Statistics101 help for more details on the Subroutine Browser.

Subroutine Summary

Here are some important points to remember about “new commands” or “subroutines”:

A subroutine is effectively a user-defined command. Once defined in a program, a subroutine’s

name is used in the same program just like that of any other Statistics101/Resampling Stats

command.

A subroutine cannot have the same name as any Statistics101/Resampling Stats command. Two

subroutines in the same program cannot have the same name.

It is good practice to put all your subroutine definitions near the beginning of a program, after

any NAMEd constant definitions and GLOBAL commands but ahead of the “main program.”

A subroutine may be declared anywhere in the program (except inside another subroutine's

definition) as long as it is declared in the text before it is invoked. A subroutine is declared by a

DECLARE command. A subroutine is defined (and declared) by a NEWCMD command. If you

define the subroutines in your program text before their first invocation, you do not need to use

the DECLARE command.

A subroutine may invoke other subroutines but only if the invoked subroutines are declared

earlier in the program text. A subroutine may not invoke itself (recursion) and two subroutines

may not invoke each other.

A subroutine must be invoked with exactly the same number of actual arguments as there are

dummy arguments in its declaration. If the declaration has three dummy arguments, then every

invocation of that subroutine must have three actual arguments. If the declaration allows optional

arguments (by using the “#” keyword in the subroutine’s declaration), the optional arguments, if

any, follow any required actual arguments.

A subroutine cannot directly access variables or constants that are declared outside itself. If it

must access some variable or constant vector from the main program or an enclosing subroutine,

then that vector must be passed to the subroutine in its argument list or that vector must be

declared to be global with a GLOBAL command

All of a subroutine's local variables are cleared when the subroutine completes execution (i.e.,

reaches its END command). A subroutine cannot hold a value in a local variable between

executions. If a subroutine needs to save a value from one execution to another, you can create a

global variable to hold that value.

A subroutine’s name and all its arguments will be used as help text in the Statistics101 main

window’s syntax help bar. This help text will become effective after the first syntax check is

performed on any program that includes a subroutine. If you are in the process of writing your

program and the help text doesn’t appear when the cursor is on a line containing a subroutine

invocation, then just run a syntax check by selecting menu Run>Check Program Syntax. Even if

there are errors, the subroutine’s syntax help text will be established.

Error Messages

There are two kinds of errors you can make when writing a program: syntax errors and logic

errors. Statistics101 can detect all syntax errors, but it can only detect those logic errors that lead

http://www.statistics101.net/userguide/UserGuide121.html

Language Basics

97

to absurdities such as attempts to perform an arithmetic operation on an enum (a named constant

that was not assigned a numerical value), or trying some operation on an unintentionally null

vector, or dividing by zero, or taking the log of a negative number, etc. If you make a logic error,

most of the time you will have to detect it yourself, usually by judging whether the simulation

results give a reasonable answer and carefully reviewing your program. The debugger can help

you find logic errors.

When you run a program in Statistics101, say by clicking on the Toolbar’s Run button, two

things happen. First, Statistics101 performs a syntax check of the program you’ve typed into the

edit window. If the syntax is correct, then Statistics101 goes ahead and executes your program.

Errors can occur in either of these two phases, the syntax check phase or the execution phase.

When it detects an error, Statistics101 will report the error in its output window and abort the

program. If the error occurred during the execution phase, Statistics101 will also open the debug

window showing the state of all the program’s variables just prior to the error.

 If you double-click on an error message in the Output Panel, the view of your program in the

Edit or Debug window will jump to the offending line, which will be highlighted in red.

Syntax Errors

Errors during the syntax check phase are frequently the result of misspelled commands, incorrect

number of arguments, an incorrect character in an argument vector, inconsistently spelled

variable names, or a named constant being used as a result variable.. The error message states

Statistics101’s understanding of the problem and gives the line number on which the error was

detected. Usually when you look at the designated line you will easily find the error.

Occasionally (rarely), the designated line is incorrect and the actual error may be found a line or

two prior to the designated line.

To avoid a cascade of spurious error messages resulting from a single error Statistics101 will

only display one error message per syntax check or per program run attempt. You should fix the

reported error, then check the syntax or run the program again. If there are more errors, you will

get another error message. If there are no more errors, the program will run to completion. For

example, here is a short program with a spelling error.

COPY 1,10 name

STDEV namme sigma 'Misspelled "name"

PRINT sigma

Attempting to run this program produces this output:

ERROR: Input variable "namme" not previously defined in command STDEV,

Token[null], Edit line 2 (Debug line 2)

Program not run because of above error(s).

This error message is an indication that namme had not been given a value earlier in the program,

therefore it can’t provide a value to STDEV. Statistics101 doesn’t “know” that namme is

misspelled, only that it hasn’t been seen before and therefore can’t serve as an input argument to

a command. When you look at the line, you can see the spelling error.

When detecting spelling errors, Statistics101 does not check your variable names against a

dictionary as a word processor does. Instead, it checks your variable names against each other, so

it doesn’t matter how you spell them as long as when you’re referring to the same variable you

Language Basics

98

always spell it the same way. Therefore, in the above example, if “name” in the first line had

been spelled “namme” it would have agreed with the “namme” in the second line and would not

have caused an error message.

You probably noticed that the error message said that the error was on “Edit line 2 (Debug line

2)” and wondered about the apparent repetition. Since there is an edit window and a debug

window in Statistics101, error messages specify which line number in each window is in error. If

you don’t use INCLUDE files, the two line numbers will always match. If you use INCLUDE

files, then the text displayed in the debug window will show all the included files (the edit

window does not show the expanded INCLUDE files) and so a line at one position in the Edit

window will be at a different position in the debug window. Thus the error message gives both

positions.

Run-time Errors

Error messages during the execution, or “run-time,” phase are usually the result of logic errors in

your simulation program. They arise from attempts to perform an arithmetic operation on an

enum (a named constant that was not assigned a numerical value), or trying some operation on

an unintentionally null vector. For these errors you’ll have to carefully review your Resampling

Stats program’s logic. For example,

COPY 1,10 myList

'. . . other program commands left out for brevity . . .

WEED myList between 1 10 result

MULTIPLY result 5 answer

PRINT answer

is syntactically correct, but semantically incorrect because the variable myList, has become an

empty vector. (WEED removes any members of its first argument that pass the subsequent test.

In this case, any numbers between 1 and 10 are removed or “weeded” out.) Thus the program

produces this error message at run time:

ERROR during execution of command MULTIPLY at Edit line 4 (Debug line 4)

java.lang.ArrayIndexOutOfBoundsException: -1

Program aborted.

The “-1” isn’t of much help; it’s the result of an array-bounds error (programmer lingo) resulting

from trying to multiply by the empty vector, result. That’s the best Statistics101 can do—it

“knows” you told it to multiply by an empty vector, but must leave it to you to figure out why

you did that. At least the main part of the error message tells you where to look for the cause of

the error.

Tip: If you double-click on the ERROR line in the output window, the cursor in the Editor

window will jump to and highlight the line containing the error.

If you have trouble finding a logic error in your simulation, Statistics101’s built-in debugger can

help you find it. With the debugger, you can step through your program one command at a time

looking at the contents of every constant and variable and even changing their values. You can

set “breakpoints” to tell the program where to pause and switch into debug mode. You initiate

the debug mode by clicking on the toolbar icon that looks like an insect. Read about how to use it

in the Statistics101 Help documentation. The help documentation is accessible via Statistics101’s

Help>Help menu or by clicking on the “?” button in the lower right corner of the Debug window.

Language Basics

99

Tip: For a quick introduction to using the Statistics101 debugger you can watch the short video

tutorial “Using the Debugger” at

http://www.statistics101.net/FlashTutorials/FlashTutorialsList.html.

http://www.statistics101.net/FlashTutorials/FlashTutorialsList.html

Special Techniques

100

Part 3: Special Techniques

When programming a simulation, you might become aware of the need to perform some special

calculation for which there is no Resampling Stats command. This section identifies several such

special cases and shows how to accomplish them using the Resampling Stats language. It also

presents subroutines that encapsulate the techniques so that they can be more easily used. Even if

you don’t need to use these subroutines, reading this section will give you many programming

concepts that you will find useful as you encounter other programming problems.

The subroutines introduced in this section (and many others) are stored in files in the

Statistics101 lib folder so you can use them in your programs without having to copy and paste

from this document. Each file contains one or more subroutines. To use a subroutine, you need to

include its file at the top of your program using an INCLUDE command, like this:

INCLUDE "lib/nameOfFileContainingSubroutine.txt"

Make sure the "Enable auto-INCLUDE" checkbox is checked in the Preferences Editor tab

(Edit>Preferences...>Editor). If it is, then after you type the name of a subroutine into your

program, the next time you do a syntax check (Ctrl-K) or run the program (Ctrl-R), Statistics101

will automatically add the appropriate INCLUDE commands to the top of your program.

If auto-INCLUDE is not enabled, then you have to enter any INCLUDE commands yourself.

There are two ways that Statistics101 can make it easier for you to include a subroutine in your

program:

If you know the name of the file containing the subroutine, right-click in the editor window and

select the item “Include Lib file...” (or type Ctrl-U). This will bring up an open-file dialog. Select

the desired file or files and click the Open button. This will add an INCLUDE command for each

selected file to the top of your program.

If you don’t know the name of the file containing the desired subroutine, left-click in the editor at

the start of a line to put the cursor where you want to invoke the subroutine. Then, hold down the

Shift key while right-clicking anywhere in the edit window and select a subroutine name from

the “Insert Subroutines From Lib By Name” submenu or from the “Insert Commands and

Subroutines By Category” submenu. This will insert the name of the subroutine at the cursor and

will also insert an INCLUDE command for the file containing that subroutine at the top of your

program.

How to compare two vectors for equality

In some simulations, you might have to decide if two vectors are the same. Take a simple case:

suppose you want to know the probability that if you flipped a coin five times, you would get

exactly three heads followed by two tails. Here’s the beginning of the program:

CONST (1 2) heads tails 'Assign values so we can use arithmetic commands

COPY (heads tails) coin

COPY 1000 repeatCount

REPEAT repeatCount

 SAMPLE 5 coin outcome

 . . .

Special Techniques

101

Now you’ve got your five coin flips in the outcome vector. How do you decide if it equals the

desired result of three heads followed by two tails?

You might think that if you have two vectors with the same elements, and you subtract one from

the other, and then sum all the differences, you would get a zero. That is true, but it is possible to

get zero even if the vectors are different, as this example shows.

COPY (2 1 2 2 2) vec1

COPY (1 2 1 3 2) vec2

SUBTRACT vec1 vec2 difference

SUM difference diffSum

PRINT diffSum

The sum of the differences here is zero, yet the two vectors are different. That happened because

some of the differences were negative and some were positive and they canceled out when you

added them. You can still use subtraction if instead of using the simple differences you use the

absolute value of the differences as in this example:

COPY (2 1 2 2 2) vec1

COPY (1 2 1 3 2) vec2

SUBTRACT vec1 vec2 difference

ABS difference absDiff

SUM absDiff absDiffSum

PRINT absDiffSum

Now the example prints that the absDiffSum is 4.0. With this revision, you are guaranteed that if

the two vectors are equal then the absDiffSum will be zero and if they are not equal, the

absDiffSum will not be zero.

This seems like a lot of work to go through just to compare two vectors. There is a simpler way.

The Resampling Stats command SUMABSDEV performs the entire calculation for you. Here’s

the last example revised to use that command:

COPY (2 1 2 2 2) vec1

COPY (1 2 1 3 2) vec2

SUMABSDEV vec1 vec2 absDiffSum

PRINT absDiffSum

Now you can use this technique in your five coin flip simulation as follows.

CONST (1 2) heads tails

COPY (heads tails) coin

COPY 0 successCount

COPY 10000 repeatCount

REPEAT repeatCount

 SAMPLE 5 coin trial

 SUMABSDEV (heads heads heads tails tails) trial result

 IF result = 0

 ADD 1 successCount successCount

 END

END

DIVIDE successCount repeatCount probability

PRINT probability

If your vectors might have enums in them, then the above technique will not work. That’s

because SUMABSDEV only accepts numbers and Named Values. For example, if I had written

ENUM heads tails

Special Techniques

102

COPY (heads tails) coin

...

then there would have been an error message when SUMABSDEV tried to do its work. Instead,

you can compare any two vectors using the following subroutine. This subroutine works for

vectors that have any combination of enums, Named Values, and/or floating point numbers. You

will find this subroutine in Statistics101’s lib directory in the file lib/vectorCommands.txt.

NAME (0 1) equal notEqual 'Define constants equal and notEqual.

GLOBAL equal notEqual

'Compares two vectors element by element for equality.

'Returns equal (0) if they are equal.

'Returns notEqual (1) if they are not equal.

'If their sizes differ they are not equal.

NEWCMD EQUAL_VECTORS vec1 vec2 result ?"Returns 0 if vec1 = vec2."

 SIZE vec1 vec1Size

 SIZE vec2 vec2Size

 COPY equal result

 IF vec1Size <> vec2Size

 COPY notEqual result

 ELSE

 FOREACH pos 1,vec1Size

 TAKE vec1 pos v1element

 TAKE vec2 pos v2element

 IF v1element <> v2element

 COPY notEqual result

 BREAK

 END

 END

 END

END

How to determine if all the elements of a vector are equal

In other situations, you might need to know if all the elements of a vector are the same. For

example, what is the probability that, if you flip a coin five times, all five flips will have the

same result, i.e., all heads or all tails?

Using the technique just discussed, you can enlist SUMABSDEV for this purpose as follows:

CONST (1 2) heads tails

COPY (heads tails) coin

COPY 0 successCount

COPY 10000 repeatCount

REPEAT repeatCount

 SAMPLE 5 coin trial

 SUMABSDEV (heads heads heads heads heads) trial result1

 SUMABSDEV (tails tails tails tails tails) trial result2

 IF result1 = 0 OR result2 = 0

 ADD 1 successCount successCount

 END

END

DIVIDE successCount repeatCount probability

PRINT probability

Special Techniques

103

Here you are doing two comparisons, one for each desired outcome. But what if the problem

were more complicated? Say that you were rolling five dice and wanted to know the probability

that all five rolls came up the same. Using the above technique you would have six OR terms in

the IF command's logical expression—one for each die face. Instead, you can take advantage of

the fact that Resampling Stats/Statistics101 will automatically extend a vector by repeating the

last element. So if you take the first element of a vector and use it to compare with the entire

vector, you have the test you are looking for. Here’s the program.

COPY 1,6 die

COPY 0 successCount

COPY 1000000 repeatCount

REPEAT repeatCount

 SAMPLE 5 die trial

 TAKE trial 1 firstElement

 SUMABSDEV firstElement trial result

 IF result = 0

 ADD 1 successCount successCount

 END

END

DIVIDE successCount repeatCount probability

PRINT probability

The trick here is: if all the elements of a vector are the same and you choose the first (or any

other) element, and extend it to have the same number of elements as the original vector, then

both vectors will be identical.

If your vector might have enums in it, then the above technique will not work. That’s because

SUMABSDEV only accepts numbers and Named Values. Instead, you can test it using the

following subroutine. This subroutine works for vectors that have any combination of enums,

Named Values, and/or floating point numbers. You will find this subroutine in Statistics101’s lib

directory in the file lib/vectorCommands.txt.

NEWCMD EQUAL_ELEMENTS vec result ?"Returns 0 if all vec's elements are equal"

 result = equal

 TAKE vec 1 firstElement

 FOREACH element vec

 IF element <> firstElement

 result = notEqual

 BREAK

 END

 END

END

How to detect a sequence

Sometimes you might have to determine whether a vector contains a sequence of numbers, such

as (3 4 5 6 7). To do that in Resampling Stats you can make use of the fact that if you copy a

vector that has sequential elements and shift its contents by one, take the difference, then remove

the first and last elements of the result, the elements of the resulting vector will all be equal. For

example,

(3 4 5 6 7) ' original sequence

(0 3 4 5 6 7) ' shifted sequence

(3 1 1 1 1 0) ' difference

(1 1 1 1) ' after removing first and last elements

Special Techniques

104

Once you’ve done the shift, subtract, and remove, you can test as shown in the previous section

to see if all the elements of the result are equal.

There are two ways to shift the elements of a vector. One way uses the COPY command’s

concatenation capability. Here I use a COPY command to shift a zero onto the left of a vector:

COPY 0 vec shiftedVec 'shift vec one place to the right; fill with zero

The second way is to use the SHIFT command, like this:

SHIFT 1 vec shiftedVec 'shift vec one place to the right; fill with zero

There is one difference between the results of these two commands. COPY adds a zero to the

front of the vector, therefore shiftedVec is larger by one than vec. In contrast, while SHIFT

also adds a zero to the front of the vector, it makes room for it by dropping the rightmost

element. Therefore with the SHIFT command shiftedVec is the same size as vec.

Here’s a program that uses all the special techniques discussed so far. It computes the probability

of a poker straight including the probability of a straight flush. The bold lines are the specific

commands that decide if a sequence has occurred.

'Compute probability of a poker straight:

'A Straight consists of 5 cards with consecutive values with the

'addition that Ace can be high (13) or low (1) as needed

'to complete the sequence. (This includes straight flushes.)

COPY 100000 repeatCount

COPY 0 straightCount

COPY 1,13 1,13 1,13 1,13 deck

REPEAT repeatCount

 SHUFFLE deck shuffledDeck

 TAKE shuffledDeck 1,5 hand

 SORT hand sortedHand

 COPY 0 sortedHand shiftedSortedHand

 SUBTRACT sortedHand shiftedSortedHand diffVector

 TAKE diffVector 2,5 diffVectorCenter

 COUNT diffVectorCenter = 1 diffVectorSum

 IF diffVectorSum = 4

 ADD 1 straightCount straightCount

 END

 ' Handle special case where ace = 13:

 SUBTRACT sortedHand (1 9 10 11 12) aceWild

 COUNT aceWild =0 aceWildSum

 IF aceWildSum = 5 'we have a match

 ADD 1 straightCount straightCount

 END

END

DIVIDE straightCount repeatCount probability

PRINT probability

Since there are a number of commands involved, you can encapsulate the idea into a subroutine

that will test whether a vector’s elements constitute a sequence. Here’s one way to do it using the

SUMABSDEV technique described in the last section to test whether all of diffVectorCenter’s

elements are equal to one (If you want to test a vector as-is, without sorting, remove the SORT

command from the subroutine.):

'Subroutine tests vec to determine if it is an arithmetic

'sequence all of whose elements differ by one when sorted.

Special Techniques

105

'If vec is such a sequence, result will be true (1).

'Otherwise, result will be false (0).

'

NEWCMD IS_SEQUENCE vec result @series @"vector operations" \

?"Returns true if vec is an arithmetic sequence with common difference

between elements of one, else false."

 SORT vec sortedVec

 COPY 0 sortedVec shiftedSortedVec

 SUBTRACT sortedVec shiftedSortedVec diffVector

 SIZE vec vecSize

 TAKE diffVector 2,vecSize diffVectorCenter

 SUMABSDEV 1 diffVectorCenter dev

 IF dev = 0

 result = true

 ELSE

 result = false

 END

END

Note the use of the predefined named constants, true and false. These were discussed earlier.

Now, all you have to do to see if a vector contains a sequence is use the new one-line command,

IS_SEQUENCE.

' Assume myVec is defined earlier in the program.

IS_SEQUENCE myVec result

IF result = true

' do whatever needs to be done for a sequence

ELSE

' do whatever needs to be done for a non-sequence

END

How to sort related vectors

If you have data for different properties of items in the population and you want to analyze it or

resample from it, you might have to keep the properties for each item aligned when you sort one

of them. For example assume you have the following data representing five different individuals:

ENUM male female

DATA (62 68 73 58 66) height

DATA (120 165 198 99 115) weight

DATA (female male male female female) sex

Say you wanted to sort the data by height. If you just apply the SORT command to the height

vector, the data in the other vectors will no longer correspond to the height numbers. If you apply

SORT to the others, they will become even more uncoordinated. What you want is to sort the

height vector, then reposition the elements of the other vectors to the positions that their

corresponding height took on after the sort. You do this using the TAGSORT command to obtain

the position numbers for each element of the height vector as if it were sorted. Then you use the

TAKE command to reposition the elements of all the vectors to that order. Here’s how:

TAGSORT height heightTags

TAKE height heightTags sortedHeight

TAKE weight heightTags sortedWeight

TAKE sex heightTags sortedSex

PRINT sortedHeight sortedWeight sortedSex

Special Techniques

106

This produces the following output:

sortedHeight: (58.0 62.0 66.0 68.0 73.0)

sortedWeight: (99.0 120.0 115.0 165.0 198.0)

sortedSex: (female female female male male)

You could generalize this into a subroutine that would do the sort as follows.

'Subroutine to do a coordinated sort, in place, of three vectors

'based on the first vector (keyVec).

NEWCMD SORTCOORD keyVec vec2 vec3 ?"Coordinated sort of three vectors"

 TAGSORT keyVec tags

 TAKE keyVec tags keyVec

 TAKE vec2 tags vec2

 TAKE vec3 tags vec3

END

Here is a program that uses this subroutine to perform three coordinated sorts, one on each

vector:

SORTCOORD height weight sex

PRINT height weight sex

PRINT 'print a blank line

SORTCOORD weight height sex

PRINT height weight sex

PRINT

SORTCOORD sex weight height

PRINT height weight sex

And here is its output:

height: (58.0 62.0 66.0 68.0 73.0)

weight: (99.0 120.0 115.0 165.0 198.0)

sex: (female female female male male)

height: (58.0 66.0 62.0 68.0 73.0)

weight: (99.0 115.0 120.0 165.0 198.0)

sex: (female female female male male)

height: (68.0 73.0 58.0 66.0 62.0)

weight: (165.0 198.0 99.0 115.0 120.0)

sex: (male male female female female)

Tip: If you frequently need to do coordinated sorting with different numbers of arguments, you

can use the subroutines defined in the file lib/coordinatedVectorCommands.txt. That file

includes two commands that do coordinated sorts for any number of vectors. One

(SORTCOORD) does an ascending sort; the other (SORTCOORD_DESC) does a descending

sort. Just add the command

INCLUDE "lib/coordinatedVectorCommands.txt"

at the top of your program and then you can invoke whichever of those subroutines you need.

How to shuffle related vectors

Instead of sorting related data, you might want to randomize them for when you are simulating

sampling without replacement. You can apply some of the ideas from the previous sorting

technique. Assuming the same dataset we used above, you first create a vector that plays the role

Special Techniques

107

of the tag vector in the previous technique. It should be the same size as the other vectors,

because it has one number for each position. Since the example vectors have five elements, this

position vector will have five elements.

COPY 1,5 positions

SHUFFLE positions shuffledPositions

TAKE height shuffledPositions shuffledHeight

TAKE weight shuffledPositions shuffledWeight

TAKE sex shuffledPositions shuffledSex

PRINT shuffledHeight shuffledWeight shuffledSex

One run produced the following output:

shuffledHeight: (66.0 73.0 68.0 62.0 58.0)

shuffledWeight: (115.0 198.0 165.0 120.0 99.0)

shuffledSex: (female male male female female)

Multiple runs will produce different orders, but the related elements will always be moved

together to their shuffled positions. This can be generalized into a subroutine as follows:

'Subroutine to do a coordinated shuffle, in place, of three vectors.

NEWCMD SHUFFLECOORD vec1 vec2 vec3 ?"Coordinated shuffle of three vectors"

 SIZE vec1 vecSize

 COPY 1,vecSize positions

 SHUFFLE positions positions

 TAKE vec1 positions vec1

 TAKE vec2 positions vec2

 TAKE vec3 positions vec3

END

Note the use of the SIZE command to determine the number of elements in the vectors. This then

allows the creation of the position vector in the next command. The next program segment shows

an invocation of the subroutine:

SHUFFLECOORD height weight sex

PRINT height weight sex

with the following output:

height: (73.0 62.0 68.0 66.0 58.0)

weight: (198.0 120.0 165.0 115.0 99.0)

sex: (male female male female female)

Each invocation of SHUFFLECOORD will produce different orders, but all the related elements

will be coordinated.

Tip: If you frequently need to do coordinated shuffling with different numbers of arguments, you

can use a subroutine defined in the file lib/coordinatedVectorCommands.txt. That file includes

the command SHUFFLECOORD, which does coordinated shuffles for any number of vectors.

Just add the command

INCLUDE "lib/coordinatedVectorCommands.txt"

at the top of your program and then you can invoke the SHUFFLECOORD command where you

need to in your program.

This coordinated shuffling technique (without using a subroutine) is used in the next program to

compute the probability of a poker straight excluding straight flushes. The boldfaced lines are the

ones using this coordinated shuffle technique.

Special Techniques

108

'Compute probability of a poker straight excluding straight flushes:

'A Straight consists of 5 cards with consecutive values with the

'addition that Ace can be high (13) or low (1) as needed

'to complete the sequence. A flush is 5 cards of the same suit.

'

'Since the card values and suits have to be considered separately

'and yet the correlation between suits and values is important for

'this problem, a third vector, "deckPositions", is used to

'coordinate the related suits and values.

COPY 1000000 repeatCount

ENUM heart club diamond spade

COPY 1,13 1,13 1,13 1,13 deckValues

COPY 13#heart 13#club 13#diamond 13#spade deckSuits

COPY 1,52 deckPositions

COPY 0 straightCount

REPEAT repeatCount

 SHUFFLE deckPositions shuffledPositions

 TAKE shuffledPositions 1,5 handPositions

 TAKE deckValues handPositions handValues

 SORT handValues sortedHandValues

 'Shift vector right by one position:

 COPY 0 sortedHandValues shiftedSortedHandValues

 SUBTRACT sortedHandValues shiftedSortedHandValues diffVector

 'Remove the 1st and last elements:

 TAKE diffVector 2,5 diffVectorCenter

 COUNT diffVectorCenter = 1 diffVectorSum

 IF diffVectorSum = 4

 'We have a straight. Check if suits match.

 TAKE deckSuits handPositions handSuits

 TAKE handSuits 1 firstSuit

 SUMABSDEV handSuits firstSuit result

 IF result <> 0

 ADD 1 straightCount straightCount

 END

 END

 'Handle special case where ace = 13:

 SUMABSDEV sortedHandValues (1 9 10 11 12) aceWild

 IF aceWild = 0

 'We have an Ace high straight. Check if suits match.

 TAKE deckSuits handPositions handSuits

 TAKE handSuits 1 firstSuit

 SUMABSDEV handSuits firstSuit result

 IF result <> 0

 ADD 1 straightCount straightCount

 END

 END

END

DIVIDE straightCount repeatCount probability

PRINT probability

How to filter related vectors

If you have a set of related data like the height, weight, and sex data seen earlier, you might want

to select a subset that meets certain criteria. For example, say you wanted the subset consisting of

Special Techniques

109

all individuals whose height is less than or equal to 65 inches. For this, you can use the TAGS

command as follows. The data declarations are repeated here for convenience:

ENUM male female

DATA (62 68 73 58 66) height

DATA (120 165 198 99 115) weight

DATA (female male male female female) sex

TAGS height <=65 heightTags

TAKE height heightTags filteredHeight

TAKE weight heightTags filteredWeight

TAKE sex heightTags filteredSex

PRINT table filteredHeight filteredWeight filteredSex

The TAGS command puts the position numbers of all the elements of height that are less than

or equal to 65 into the vector heightTags. Then those tags are used to copy the elements from

those same positions in each related input vector into a new output vector. The job of the TAKE

commands can be generalized into a subroutine that will allow you to filter any number of input

vectors. Here is how that can be done.

NEWCMD TAKECOORD tags #"{inVector outVariable}"

 ARGCOUNT numberOfArgs

 REMAINDER numberOfArgs 2 remainder ' must be an even number of arguments.

 IF numberOfArgs >= 2 AND remainder = 0

 COPY 1 argNum

 WHILE argNum < numberOfArgs

 GETARG argNum inArg

 ADD 1 argNum argNum

 GETARG argNum outArg

 TAKE inArg tags outArg

 ADD 1 argNum argNum

 END

 ELSE

 DEBUG "ERROR: Incorrect number of arguments in TAKECOORD."

 END

END

TAGS height <=65 heightTags 'Perform test prior to invoking subroutine

TAKECOORD heightTags height filteredHeight weight filteredWeight \

sex filteredSex

PRINT table filteredHeight filteredWeight filteredSex

Above, I first defined the subroutine, TAKECOORD. Then I used the TAGS command to

generate a list of the positions of the elements that are less than or equal to 65. Finally, I used

those tags as input to the TAKECOORD subroutine to obtain the answer. The TAKECOORD

subroutine is in the subroutine library in the file coordinatedVectorCommands.txt so you can use

it by merely invoking it.

In both cases, the result is as follows:

filteredHeight filteredWeight filteredSex

62 120 female

58 99 female

Tip: If you frequently need to do coordinated filtering with different numbers of arguments, you

can use another subroutine defined in the file lib/coordinatedVectorCommands.txt. That

Special Techniques

110

subroutine is called SELECTCOORD. It combines the TAGS command and the TAKECOORD

command into one subroutine to do coordinated filtering for any number of vectors based on a

test you supply. You can use the Subroutine Browser to find and read its description and

definition.

How to iterate over related vectors

The FOREACH command provides an easy way to iterate over a single vector as you saw

earlier. But suppose you had several related vectors such as the height, weight, and sex data that

we’ve been discussing, and that you wanted to know how many men under 65 inches weighed

more than 200 pounds. In this case, you have to iterate over the vectors in a coordinated way

testing the elements of all the vectors at each position. Here’s a program that would do the job:

ENUM male female

DATA (62 68 73 58 66 60 58) height

DATA (120 165 198 99 115 210 340) weight

DATA (female male male female female male male) sex

'Count the number of men under 65 inches who

'weigh more than 200 pounds.

COPY 0 overweightMen

SIZE height vecSize

FOREACH position 1,vecSize

 TAKE height position heightElement

 TAKE weight position weightElement

 TAKE sex position sexElement

 IF sexElement = male AND heightElement < 65 AND weightElement >200

 ADD 1 overweightMen overweightMen

 END

END

PRINT overweightMen

Here a sequence is created containing the numbers from 1 to the size of one of the data vectors.

(All the data vectors must be the same size.) The FOREACH command iterates through that

sequence, assigning each number in turn to the variable named “position.” That variable is used

to TAKE the elements at the same position from all the data vectors. Then the elements are

tested with the IF command and if the elements all satisfy the test criteria, the count of

overweight men is incremented.

How to avoid the “Out of Memory” error

If your Resampling Stats program has very large vectors, it may run out of memory space. If that

happens, you will get an error dialog notifying you of the condition, and the program will abort.

Most of the time, you can revise your program so that it does not require so much memory. For

example, here is our familiar “two heads out of three tosses” coin problem, with an unnecessarily

large number of repetitions as a demonstration:

ENUM heads tails

COPY heads tails coin

COPY 10000000 numberOfTrials

REPEAT numberOfTrials

 SAMPLE 3 coin trial ' flip coin 3 times

 COUNT trial = heads headcount

 SCORE headcount results

http://www.statistics101.net/userguide/UserGuide121.html

Special Techniques

111

END

COUNT results = 2 successes

DIVIDE successes numberOfTrials probability

PRINT probability

When you run this program, you will get the “Out of memory” message and the program will

abort (unless you have a huge amount of RAM allocated to your Java virtual machine). The

reason the program consumes so much memory is that it uses the SCORE command to save the

results of each trial. Therefore, the results vector grows to contain numberOfTrials elements. In

simulating this problem, there is no reason to save all those results since all we want is the count

of successes. This program can be revised so that it will never overflow memory, like this:

ENUM heads tails

COPY heads tails coin

COPY 10000000 numberOfTrials

COPY 0 successes

REPEAT numberOfTrials

 SAMPLE 3 coin trial ' flip coin 3 times

 COUNT trial = heads headcount

 IF headcount = 2

 ADD 1 successes successes

 END

END

DIVIDE successes numberOfTrials probability

PRINT probability

The revised program simply counts the number of successes directly, without accumulating them

in a vector. It also probably runs slightly faster than the earlier one.

The general approach to avoiding “out of memory” errors is to look for arrays that grow during

the simulation and try to revise the simulation to minimize or eliminate those arrays or their

growth.

Bibliography

112

Bibliography

Downing, Douglas, Ph.D., and Jeffrey Clark, Ph.D. Statistics The Easy Way, Barron’s

Educational Series, Inc., 1997.

Freedman, David H., Wrong: Why experts keep failing us--and how to know when not to trust

them, Little, Brown and Company Hachette Book Group, 2010.

Mooney, Christopher Z., and Robert D. Duval, Bootstrapping: A Nonparametric Approach to

Statistical Inference , Sage Publications, Newbury Park, California, 1993.

Mooney, Christopher Z., Monte Carlo Simulation , Sage Publications, Thousand Oaks,

California, 1997.

Simon, Julian, Resampling: The New Statistics, Resampling Stats, Inc., Arlington, Virginia,

http://www.resample.com/intro-text-online/.

Voelker, David H., MA et al., CliffsNotes Statistics Quick Review , Hungry Minds, Inc. New

York, NY, 2001.

http://www.amazon.com/gp/product/0812093925/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0812093925
http://www.amazon.com/gp/product/0316023787/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0316023787
http://www.amazon.com/gp/product/0316023787/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0316023787
http://www.amazon.com/gp/product/080395381X/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=080395381X
http://www.amazon.com/gp/product/080395381X/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=080395381X
http://www.amazon.com/gp/product/0803959435/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0803959435
http://www.resample.com/intro-text-online/
http://www.amazon.com/gp/product/0470902604/ref=as_li_ss_tl?ie=UTF8&tag=statistics101-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=0470902604

Glossary

113

Appendix 1: Glossary

Actual Argument Any argument listed on a subroutine invocation. Contrast with

“Dummy Argument.”

Annotation Annotations are optional markups on a subroutine that provide information

about the subroutine that becomes integrated into Statistics101 help system. There are

two types of annotations: 1. A description annotation, which is a one-line description of

the purpose of the subroutine. 2. A category annotation, which specifies the category or

categories that the subroutine’s name should be listed with in the Subroutine Browser

and the Edit Window popup menu.

Argument An input or an output of a command or a subroutine. An argument may be a

constant or a variable.

Bootstrap A resampling method that uses a set of sample data as if it were the

population under study by taking random samples with replacement from the original

sample and using these derived samples to compute estimates of the distributions of

desired test statistics.

Command The unit of computation of Resampling Stats and Statistics101. Each

command operates on data and produces a result. Each command is normally confined

to one text line with the command’s name being first on the line followed by zero or

more keywords, followed by zero or more arguments. A command may be extended

over multiple lines if the backslash continuation character ("\") is the last character on

each line but the last.

Comment An explanatory note in a Statistics101 program that is intended for human

readers, not the computer. There are two kinds of comments. The first is a one-line

comment that is introduced by a single quote character. The second type is the block

comment, which can span multiple lines and is enclosed between two markers, like this:

/* block comment */.

Compound Command A command that includes several commands in its scope.

Examples are IF, NEWCMD, REPEAT, FOREACH, UNTIL, and WHILE. The scope of a

compound command is terminated by an END command.

Compound Test One or more simple tests combined with logical operators. For

example:

number1 <= number2 AND vecA between 1 10.

Compound tests are allowed only in the IF, ELSEIF, UNTIL, and WHILE commands.

Conditional Loop A loop whose number of repetitions is not fixed but is determined by

a logical expression. WHILE and UNTIL loops are conditional loops. REPEAT and

FOREACH are “unconditional” loops.

Glossary

114

Constant 1. A vector whose content does not change, usually a literal vector, such as

(1 4.5 2 6.7 9). 2. A number that is given a name by the CONST or NAME command. 3.

A string literal. Contrast with “Variable.”

Declaration 1. The introduction of a subroutine’s name and argument list into a

program. The NEWCMD command declares a subroutine as a byproduct of defining the

subroutine. The DECLARE command declares but does not define the subroutine. (See

also “Definition” and “Invocation.”) 2. The introduction of a vector name into a program

as the output argument of some command. For example,

COPY vec1 vec2

introduces vec2 into the program, assuming that this is its first appearance. vec1 is an

input and therefore must have been declared previously.

Definition The complete description of a subroutine including all the commands

between its NEWCMD command and its END command. See also “Declaration” and

“Invocation.”

Dummy Argument Any name listed as a subroutine argument in a NEWCMD

command. A dummy argument is just a placeholder. When a subroutine is invoked, it is

invoked with actual arguments that will be substituted for the dummy arguments based

on their positions in the argument list. The actual arguments need not have the same

names as the dummy arguments they are replacing.

Element Any individual number or named constant in a vector.

Enum Short for “enumerator.” A named constant that was not given a value by the

user. It has a hidden arbitrary value assigned by the ENUM or NAME command. Since

it does not have a meaningful numerical value, it cannot be used with arithmetic

commands such as ADD, SUBTRACT, SUMABSDEV, SQUARE, etc. Contrast with

“Named Value.” Example:

ENUM mon tue wed thu fri sat sun

Global Name A name of a variable or constant vector or Named Constant or String

that is visible (see Visibility) throughout a program, including within subroutines. Names

are made global being listed in a GLOBAL command. The GLOBAL command cannot

be used within a subroutine. Compare with “Local Name” and “Non-local Name.”

Invocation The use of a subroutine in a program. (Contrast with “Declaration” and

“Definition.”)

Keyword A predefined word added to a command’s argument list that modifies the

behavior of the command. For example, the keyword table directs the PRINT command

to print its arguments in a table format instead of the usual horizontal format. Some

keywords may take an argument themselves. For example the binsize keyword of the

HISTOGRAM command takes a number as an argument.

Glossary

115

List A one-dimensional ordered collection of numbers considered as a unit. Usually

refers to a literal vector. See the entry for Vector in this glossary.

Literal 1. A number without a name, e.g., 5.789. 2. A vector without a name, e.g., (1 5

3 4 ace 2 7). 3. A text string without a name. Keywords, named constants, and the

missing numbers codes (period and NaN) are also considered to be literals. (See also

Missing Number)

Local Name A name of a variable or constant vector that is visible (see Visibility) only

within a subroutine. The name of any vector or string declared within a subroutine is a

local name. Compare with “Global Name” and “Non-local Name.”

Logical Expression A logical expression is a comparison between values that

produces a true or false result. There are two types of logical expressions, simple tests

or just tests (e.g., number1 < number2) and compound tests. See “compound test.”

Missing Number A special literal that represents the fact that for that position in a

vector, the data is missing. A missing number is represented in Statistics101 by either a

period (“.”) or the characters “NaN”, which is an acronym for “Not a Number.” For

example, if you had a set of data of students' height versus weight, but for some

students all you had was their height or their weight, you would mark the missing data

with NaN or period like this:

DATA (62 71 60 68 NaN 72) height

DATA (102 115 . 170 145 194) weight

With regard to tests on missing data (NaN or “.”), NaN is equal only to NaN, not to any

other number. Furthermore, NaN is not greater than or less than any number, including

NaN.

Mixed Vector A vector that contains both numerical values and Named Constants.

Example: (ace deuce trey 4 5 6 7)

Model The detailed representation of a probability or statistical simulation in the form of

a Resampling Stats program.

Monte Carlo Simulation The use of random or pseudo-random data as input to a

computer model of a process to obtain results that are difficult or impossible to

characterize with a mathematical formula. The name comes from the capital of Monaco,

known for its casinos. Resampling methods are Monte Carlo simulations.

Multiple Specification A combination of an operator, consisting of the pound-sign (#)

and two arguments, one each on its left and right sides that specifies a vector. The

general form of the multiple specification is n1#vec, where n1 is a number (see the

definition of number) that determines how many times all the elements of the vector vec

will be reproduced in the resulting vector. vec may be any kind of vector specification,

including a Sequence specification, except that it may not be another Multiple

Glossary

116

specification. For example, 3#(1 2 3) specifies the vector (1 2 3 1 2 3 1 2 3). The

specification 3#1,3 specifies the same vector. Both arguments of the Multiple

specification may be variables. The Multiple specification may be used anywhere a

literal vector is allowed in the language except, as just noted, in another Multiple

specification.

NaN A literal representing a missing number. NaN is an acronym for “Not a Number.”

Typographical case doesn’t matter, so “NAN” or any other combination of upper and

lower case is equivalent to NaN. A missing number can also be represented by a period

(“.”). See Missing Number.

Named Constant Any name defined by the ENUM, CONST or NAME commands.

There are two kinds of Named Constants: enums and Named Values.

Named Value A Named Constant that was given a value by the user in a CONST or

NAME command. Since these have meaningful numerical values, they can be used with

arithmetic commands such as ADD, SUBTRACT, SUMABSDEV, SQUARE, etc.

Contrast with “Enum.” Example:

CONST (2.71828 3.1459) e pi

Nesting The inclusion of a compound command within another compound command.

See “Compound Command.”

Non-Local Name A name of a variable or constant that is visible (see Visibility) only

outside of subroutines, not within subroutines. Non-local names are names declared

outside of subroutines, that are not declared to be GLOBAL. Compare with “Local

Name” and “Global Name.”

Number 1. A literal value such as 1.23 2. A vector with only one element. 3. A vector

with more than one element but of which only the first will be used (as in a test such as

vecA > 5).

Operator A keyword or symbol that performs or describes a computation. Comparison

operators, such as =, <, and “between” are used in simple tests. Logical operators, such

as AND, OR, and NOT are used in compound tests. Arithmetic and concatenation

operators, such as +, -, and & are used in the LET command. The generative operators,

and comma (for example, as in 3#5 and 1,10,2), are used to generate vectors with

repetitive or sequential elements.

Optional Argument An optional dummy argument of a subroutine. Optional arguments

are introduced by the “#” keyword. As an example, here is a subroutine declaration that

allows dummy arguments:

NEWCMD MYSUB inputArg #"{optionalArgs}"

...

END

Glossary

117

This declares that MYSUB takes one input argument and zero or more optional

arguments.

Precedence The order in which operators will be evaluated in cases where a decision

must be made between two or more operators.

Probability For the purposes of deriving probabilities by simulation, probability is

defined as the relative frequency of a random experiment’s outcomes. In other words,

for a particular result of a simulation experiment, the probability is the ratio of the

number of times that that result occurred to the number of times the experiment was

run. As a formula,

Probability = number of “successes” / number of trials.

Process The origin of the randomness implicit in a probability problem. The “process”

is the method you use to select your sample from the population and to separate the

desired outcomes from the undesired outcomes.

Program An ordered sequence of commands designed to achieve some computational

result.

Resampling The use of the observed data or of a data generating mechanism (such

as a die or a computerized random number generator) to produce new hypothetical

samples, the results of which can then be analyzed. (after Simon’s Resampling: The

New Statistics, p. 2)

Resampling Stats The name of the statistical simulation language originally developed

by Julian Simon, Peter Bruce, Dan Weidenfeld and others. Statistics101 executes a

greatly enhanced version of the language.

Runtime Error An error that is detected by Statistics101 during the execution of a

Resampling Stats program. These are errors in the logic of your program. The

Statistics101 debugger can help you understand and fix the cause. Contrast with

“syntax error.”

Scientific Notation A way of representing any number as a number between 1 and 10

(called the “mantissa” or “significand”) multiplied by 10 to an exponent. For example, the

number 12345.67 is written as 1.234567E4. The “E4” indicates that the 1.234567 must

be multiplied by 10 to the fourth power, or 104. The mantissa may be positive or

negative and the exponent may be positive or negative. In Resampling Stats, however,

plus signs are not allowed. Numbers are assumed positive unless preceded by a minus

sign.

An easy way to translate from scientific notation to a normal (“floating point”) number is

this: for positive exponents, move the decimal point of the mantissa to the right by the

number of places specified by the exponent. For negative exponents, move the point to

the left by the number of places specified by the exponent.

Glossary

118

Sequence Specification A combination of an operator, consisting of one or two

commas, and two or three numbers, that specifies an increasing or decreasing

sequence of numbers. The general form of the sequence specification is n1,n2,n3

where n1 is the starting number (see the definition of number) for the sequence, n2 is

the ending number of the sequence, and n3 is the size of the step between any two

adjacent numbers. The ending number, n2, may be less than n1. In that case the

sequence is in descending order. The step size, n3, is optional and if present must be

greater than zero (may not be negative). If it is omitted (along with its preceding

comma), the step size defaults to one. As an example, the sequence specification 1,100

specifies a sequence consisting of all the numbers from 1 to 100, inclusive. A second

example, 1,100,2 specifies all the odd numbers between 1 and 100. In this case, the

value 100 is not a member of the sequence. Any or all arguments of the Sequence

specification may be variables. The sequence specification may be used anywhere a

literal vector is allowed in the language.

Simulation Duplication of the important characteristics of a process or phenomenon,

usually using a computer, to discover consequences of the process or phenomenon.

Statistics101 The name of the computer application that is the subject of this

document. Statistics101 executes programs written in the Resampling Stats language.

Together, the pair solve problems, including problems in probability and statistics by

simulation, typically using pseudorandom numbers.

String A term referring to a string of text, i.e., a sequence of characters. There are two

kinds of strings in Resampling Stats: 1. A “string literal” or “literal string” which is some

text enclosed between double quotation marks. 2. A “string variable” or “variable string,”

which is a named variable created with the STRING command. Either may be used

wherever a command calls for a text string.

Subroutine A named set of commands that is treated as a unit. Subroutines are

created using the NEWCMD command.

Syntax Error The result of an invalid construct in a Resampling Stats program. Typical

syntax errors include a misspelled command, a command with an incorrect number of

arguments, a misspelled variable name, etc. Contrast with “runtime error.”

Test A comparison among values yielding a result of true or false. For example, vec1

<= vec2 tests whether the first element of vec1 is less than or equal to the first element

of vec2.If it is, the test evaluates to true, otherwise, to false. Also called a “simple test.”

See also, “compound test.”

Type Named Constants created by the same ENUM, CONST, or NAME command are

of the same “type.” Named constants created by separate ENUM, CONST, or NAME

commands are of different “types” unless the TYPE keyword is used to specify type

Glossary

119

commonality. Named Constants of the same type sort together. Two Named Constants

of different types are never equal to each other.

Variable A named vector or named string whose value is allowed to change during the

execution of a program. Contrast with “Constant.”

Vector A one-dimensional ordered collection of numbers considered as a unit. The

vector may be a variable or a constant and may or may not have a name. In

Resampling Stats, a vector is represented as a sequence of numbers and/or Named

Constants separated by spaces and enclosed in parentheses. For example: (2.3 4 6.7 -

4 21). “List” and “vector” are used interchangeably in this document.

Visibility Visibility refers to the portions of a program wherein the name of a variable

or constant may be used relative to where it is declared. In Statistics101 a name is

visible only after the name is declared (see “declaration”). There are four categories of

visibility:

Dummy: Any subroutine argument (“dummy variable”) name. The names of dummy

variables are visible only within their subroutine.

Local: Any variable or constant name declared within a subroutine, that is not a dummy

variable. A local name is visible only within that subroutine.

Non-local: Any variable or constant name declared outside a subroutine. Non-local

names are visible at any point after their creation except within subroutines.

Global: Any variable or constant name declared to be global by a GLOBAL command.

Global names are visible anywhere in the program following the GLOBAL command.

They are visible both within and outside of subroutines. (The GLOBAL command itself

cannot be used inside a subroutine.)

Command/Subroutine Descriptions

120

Appendix 2: Complete Command/Subroutine Descriptions

This table lists and describes the commands and subroutines supplied in the Statistics101 lib

directory. The command names are shown in normal (“roman”) type; the subroutine names are

shown in oblique (“italic”) type. You can find complete information on each command in the

“help” documentation which is available by selecting the Help>Help menu item. You can find

full information on each subroutine, by using the subroutine browser, which is available by

selecting the Window>Show Subroutine Browser menu item.

The easiest way to find a command or subroutine when you don’t know its exact name or if it

even exists is to do a keyword search using the Command/Subroutine Index, which is available

from the Statistics101 program’s Help menu, Help>Command/Subroutine Index or by pressing

the F3 function key.

To use any of the subroutines you must add an INCLUDE command to your program, that

identifies the file containing the subroutine. For example, for the BETA subroutine, you would

use the command:

INCLUDE "lib/BetaDistribution.txt"

If you have enabled the “Auto-INCLUDE” feature in the “Edit>Preferences...>Editor” dialog,

then the necessary INCLUDE commands will be added automatically when your program’s

syntax is checked or the program is run.

Also in the lib directory are some files that define some commonly used math and logical

constants. The file lib/mathConstants.txt contains definitions for constants such as pi, e, and

conversions between radians and degrees. You can INCLUDE this file in your program to make

the constants available. This file is not “auto-Included,” so you’ll have to put the INCLUDE

command in manually. The easiest way to include it is to select the Edit>Include Lib File(s)...

menu item (or press Ctrl-U) then choose the mathConstants.txt file from the Open File dialog

that appears. When you click the Open button, an INCLUDE command for that file will be added

to the top of your program.

ABS
Computes the absolute value of each element of the input vector.

ACOS
Computes the arc cosine of each element of its input vector.

ACOSDEG
Computes the arc cosine, in degrees, of each element of its input vector.

ADD
Arithmetically adds corresponding elements of its input vectors.

ARGCOUNT
Returns the number of arguments that its enclosing subroutine had when invoked.

ASIN
Computes the arc sine of each element of its input vector.

ASINDEG

Command/Subroutine Descriptions

121

Computes the arc sine, in degrees, of each element of its input vector.

ATAN
Computes the arc tangent of each element of its input vector.

ATANDEG
Computes the arc tangent, in degrees, of each element of its input vector.

AUTOCORR
Computes a vector of autocorrelations of the input vector for all time lags (position

shifts).

AUTOCORRGRAPH
Displays a graph of the autocorrelation of the given vector at all lag intervals.

BETA
Generates a given number of random numbers from an approximation to the Beta

Distribution, Beta(a,b) for integers a and b >= 1 with result being in the range from min

to max.

BETA_01
Generates a given number of random numbers from an approximation to the Beta

Distribution, Beta(a,b) for integers a and b >= 1 with result being in the range from 0 to

1.

BINOMIALPROB
Computes the probability of k successes in n trials given a probability of success.

BINOMIALSAMPLE
Selects a given number of samples from a binomial distribution.

BINOMIALTRIALS
Generates numberOfTrials samples of size sampleSize and records the number of

successes from every trial in trialResults.

BOOTSTRAPMEAN
Resamples a vector containing sample data computing the mean a given number of

times to produce a distribution of the means.

BOOTSTRAPMEDIAN
Resamples a vector containing sample data computing the median a given number of

times to produce a distribution of the medians.

BOOTSTRAPSTDDEV
Resamples a vector containing sample data computing the stdev a given number of

times to produce a distribution of the stdevs.

DOUBLE_BOOTSTRAP_MEAN_CI
Computes the adjusted and unadjusted lower and upper bounds of a confidence interval

using nested bootstraps.

Command/Subroutine Descriptions

122

BOXPLOT
Outputs a boxplot of one or more input vectors to the output window.

BREAK
Immediately exits the innermost enclosing REPEAT, FOREACH, WHILE, or UNTIL

loop.

BUBBLEGRAPH
Creates a bubble graph of its input vectors in a new graphic window tab.

CHISQUARE
Computes the chi-square statistic from its two input vectors.

CHISQUAREDIST
Returns a given number of random values from the chi-square distribution with given

degreesOfFreedom.

CHISQUARE_TABLE
Computes the probabilities and predicted frequencies for the cells of the Chi-square

contingency table.

CHISQUARE_TRIALS
Generates the specified number of trials from a Chi-square distribution.

CHOOSETAGSTEST
Returns indexes of elements of inVector that satisfy a specified test. Used inside other

subroutines to allow tests for the TAGS command to be passed into other subroutines.

CHOOSETEST
Returns result of a specified test on its arguments. Used to allow tests to be passed into

other subroutines.

CLEAN
Removes “missing data” (NaN) from one or more vectors. If CLEAN has more than one

argument, if any argument contains an NaN at some position, CLEAN removes

elements from all vectors at that same position. This keeps all the remaining elements

aligned.

CLEAR
Removes all the elements from one or more vectors.

CLEAROUTPUT
Clears the contents of the Output Window.

CLOSETABS
Closes all graph tabs.

CLUSTERSAMPLE
Generates a cluster sample and stores it into given colNsample vectors.

CLUSTERSAMPLE2

Command/Subroutine Descriptions

123

A more computationally efficient version of CLUSTERSAMPLE.

COMBINATIONS
Computes the number of combinations of n items taken k at a time .

COMPLEX
Creates a vector of complex numbers from separate vectors containing the real and

imaginary components.

COMPLEX_ADD
Adds corresponding elements of two or more vectors containing complex numbers in

rectangular form.

COMPLEX_CONJUGATE
Takes the conjugate of all elements in z. z must be in rectangular form.

COMPLEX_COS
Computes the complex cosine of a complex number in rectangular form.

COMPLEX_COSH
Computes the complex cosh of a complex number in rectangular form.

COMPLEX_COT
Computes the complex cotangent of a complex number in rectangular form.

COMPLEX_COTH
Computes the complex hyperbolic cotangent of a complex number in rectangular form.

COMPLEX_CSC
Computes the complex cosecant of a complex number in rectangular form.

COMPLEX_CSCH
Computes the complex csch of a complex number in rectangular form.

COMPLEX_DIVIDE
Divides corresponding elements of two or more vectors containing complex numbers in

rectangular form.

COMPLEX_EXP
Computes the complex exp of a complex number in rectangular form.

COMPLEX_GRAPH
Displays a scatter graph of the complex numbers in the input vector. Complex numbers

must be in rectangular form.

COMPLEX_GRAPH_RADIAL
Displays a radial graph of the complex numbers in the input vector. Complex numbers

must be in rectangular form.

COMPLEX_IM
Copies the imaginary components of the complex vector z into its result vector, im.

Command/Subroutine Descriptions

124

COMPLEX_MAGNITUDE
Computes the magnitudes of each element of a vector containing complex numbers in

rectangular form.

COMPLEX_MULTIPLY
Multiplies corresponding elements of two or more vectors containing complex numbers

in rectangular form.

COMPLEX_PRINT
Prints multiple vectors containing complex numbers in rectangular form.

COMPLEX_PRINT_POLAR
Prints multiple vectors containing complex numbers in polar form.

COMPLEX_PUT
Copies complex numbers from input vector to the result vector into the positions

specified in the pos vector.

COMPLEX_RE
Copies the real components of the complex vector z into its result vector, re.

COMPLEX_SEC
Computes the complex secant of a complex number in rectangular form.

COMPLEX_SECH
Computes the complex hyperbolic cosecant of a complex number in rectangular form.

COMPLEX_SIN
Computes the complex sine of a complex number in rectangular form.

COMPLEX_SINH
Computes the complex sinh of a complex number in rectangular form.

COMPLEX_SPLIT
Splits complex number vector into real and imaginary parts.

COMPLEX_SUBTRACT
Subtracts corresponding elements of two or more vectors containing complex numbers

in rectangular form.

COMPLEX_TAKE
Copies complex numbers at specified positions from its input to its result vector. Similar

to the TAKE command, but operates on vectors of complex numbers.

COMPLEX_TAN
Computes the complex tangent of a complex number in rectangular form.

COMPLEX_TANH
Computes the complex hyperbolic tangent of a complex number in rectangular form.

COMPLEX_TOPOLAR
Converts a vector containing complex numbers in rectangular form to polar (CIS) form.

Command/Subroutine Descriptions

125

COMPLEX_TORECT
Converts a vector containing complex numbers in polar (CIS) form to rectangular form.

CONCAT
Concatenates arguments into a single vector (Same as COPY).

CONST
Creates one or more Named Values. Named Values are Named Constants that have a

numerical value.

COPY
Concatenates arguments into a single vector.

CORR
Computes Pearson's product moment correlation coefficient of two vectors.

COS
Computes the cosine of each element of its input vector

COSDEG
Computes the cosine of each element, in degrees, of its input vector.

COSH
Computes the hyperbolic cosine of real x.

COTH
Computes the hyperbolic cotangent of real x.

COUNT
Counts the number of elements that pass a specified test

COVARIANCE
Computes the covariance of two input vectors of equal length

CRAMERS_RULE
Computes the solutions to a system of linear equations.

CSCH
Computes the hyperbolic cosecant of real x.

DATA
Concatenates arguments into a single vector (Same as COPY).

DEBUG
Causes Statistics101 to enter Debug Mode.

DEBUG_AT
Enters Debug mode when counter reaches stopCount

DECLARE
Declares the name and argument list of a subroutine so the subroutine may be invoked

in the text of a program prior to its actual definition.

Command/Subroutine Descriptions

126

DEDUP
Removes duplicate elements from its input vector.

DELTAS
Returns the differences between adjacent elements.

DERIVATIVE
Computes y1 = dy/dx. Y1 is the derivative.

DETERMINANT
Computes the determinant of matrix up to size 6 by 6.

DIVIDE
Arithmetically divides corresponding elements of its input vectors.

DRAW
Draws howMany items without replacement from the global shuffledUniverse. Used with

the RESHUFFLE subroutine.

DRAW2
Draws howMany items from shuffledUniverse without replacement. Used with the

RESHUFFLE2 subroutine.

ELSE
Marks the beginning of a set of commands to be executed if an IF command's logical

expression evaluates to false and all ELSEIF commands likewise fail.

ELSEIF
Marks the beginning of a set of commands to be executed if its logical expression

evaluates to true and the logical expression of its associated IF command and all

preceding associated ELSEIF commands evaluate to false.

END
Marks the end of an IF, REPEAT, FOREACH, WHILE, UNTIL, or NEWCMD command

block.

ENUM
Creates one or more enumerator constants. Enumerator constants have no numerical

value.

EQUAL_ELEMENTS
Returns 0 if all vec's elements are equal; returns 1 otherwise.

EXEC
Submits a command string to the underlying operating system (e.g., Windows, MacOS,

Linux) to be executed in a separate process.

EXIT
Terminates the currently running user program.

EXITQ

Command/Subroutine Descriptions

127

Asks user whether to terminate or continue the current program.

EXP
Computes the number e (i.e., 2.71828...) raised to the power of each element of the

input vector.

EXPONENTIAL
Randomly selects a specified number of values from a specified exponential

distribution.

EXTRACT
Draws howMany items from fromVec without replacement.

FACTORIAL
Computes factorials of all elements of vec.

FDIST
Returns a given number of random values from the F distribution with the given degrees

of freedom.

FIBONACCI
Computes the Fibonacci series of the given size, where size > 0.

FOREACH
Executes commands between FOREACH and END assigning each element of a given

vector one by one to a specified variable.

FRACTION
Copies the fractional part of each element of its inputVector into its result vector.

FUZZ
Sets a range of validity for value comparisons during tests.

FV
Computes future value. 'rate' is a decimal fraction, not a percent.

FV2
Computes future value of variable rates and variable payments. 'rate' is a decimal
fraction, not a percent.
GAMMA
Returns the gamma function, gamma(vec) for each real positive element of vec.

GAMMADIST
Returns a given number of random numbers from the gamma distribution Gamma(1,a)

for integer a >= 1.

GENERATE
Randomly selects a specified number of elements from a vector, with replacement.

(Same as SAMPLE and RANDOM.)

GENERATE_COMBINATIONS

Command/Subroutine Descriptions

128

Generates all combinations of data vector's elements taken 'groupSize' elements at a

time. For each permutation it invokes a user-written subroutine,

PROCESSCOMBINATION.

GENERATE_PERMUTATIONS
Generates all permutations of data vector's elements taken 'groupSize' elements at a

time. For each permutation it invokes a user-written subroutine,

PROCESSPERMUTATION.

GETARG
Copies the specified optional argument into its result variable.

GETFILEPATH
Retrieves the path information for the file accessed by the most recent READ or WRITE

command.

GLOBAL
Declares that the names in its argument list are to be visible within subroutines.

HISTOGRAM
Creates a histogram of one or more vectors in a new graphic window tab.

HISTOGRAMDATA
Computes a histogram from its input vector and puts the results in the remaining

vectors. Does not make a plot or graph.

HISTOGRAMPLOT
Prints a text histogram of one or more vectors to the output window.

IF
Allows execution of commands between IF and END if a specified logical expression

evaluates to true.

INCLUDE
This command replaces itself with the contents of the file(s) in its argument list.

INCR
Increments each element of vec by one.

INPUT
Prompts the user for input and accepts user's input.

INTEGER
Converts all elements of its input vector to integer by truncation, floor, ceiling, or

rounding, depending on the keyword. Default is truncation.

INTEGRAL
Indefinite integral y1 = Integral(y(x)dx). x and y must be same length.

INTEGRALDEF
area is the definite integral of y(x)dx from a to b.

Command/Subroutine Descriptions

129

INTERPOLATE_LINEAR
Performs linear interpolation for an x vector containing one or more x values.

IS_ASCENDING
Returns true if input vector is in ascending order.

IS_EVEN
If argument is even, returns true. Otherwise returns false.

IS_SEQUENCE
Returns true if vec is a sequence with common difference of 1, else returns 0.

IS_SEQUENCE2
Returns true if vec is an arithmetic sequence, else 0. Optionally also returns the

common difference between elements of vec.

KURTOSIS
Computes the kurtosis of data in the input vector. The KURTOSIS of a normal variable

is 3.

KURTOSIS0
Computes the zero-based kurtosis of data in the input vector. The KURTOSIS0 of a

normal variable is zero.

LAGGRAPH
Displays a lag graph of a given vector at a given lag interval. A lag graph plots a series

of numbers against itself, shifted by one or more positions.

LET
Uses mathematical formula notation to compute a value and assign it to a variable.

Allows use of many Statistics101 math command names as unary functions.

LOG
Computes the natural logarithm of each element of its input vector.

LOG10
Computes the base 10 logarithm of each element of its input vector.

LOGNORMAL
Randomly selects a specified number of numbers from a specified lognormal

distribution.

LOOKUP
Given the table (sortedKeys, correspondingValues), returns the desiredValues whose

keys match the desiredKeys.

MAKECUMDIST
Creates a vector of cumulative probabilities from a vector of probabilities.

MATRIX_ADD

Command/Subroutine Descriptions

130

Adds matrices element by element. All matrices must have the same number of rows

and the same number of columns.

MATRIX_GETCOL
Returns the column specified by colNum.

MATRIX_GETCOLS
Copies columns from matrixVec one by one into the column arguments.

MATRIX_GETELEMENT
Returns the element at (row,col) of matrixVec.

MATRIX_GETROW
Returns the row specified by rowNum.

MATRIX_GETROWS
Copies rows from matrixVec one by one into the rowVec arguments.

MATRIX_INVERT
Takes the inverse of the given square matrix up to size 6 by 6.

MATRIX_MAKE_BY_COL
Creates a matrix from at least one column vector.

MATRIX_MAKE_BY_ROW
Creates a matrix from at least one row vector.

MATRIX_MULTIPLY
Computes the matrix product of two matrices.

MATRIX_PRINT
Prints the given matrix to the output window.

MATRIX_SUBMATRIX
Returns a submatrix which is matrixVec with the specified row and column removed.

MATRIX_TRANSPOSE
Computes the transpose of matrixVec.

MATRIX_UNIT
Generates a unit matrix. Diagonal elements are all ones. Others are zero.

MAX
Finds the largest value (most positive) in its input vector.

MAXIMUMS
Copies maximum element of all input vectors into same position in result.

MAXSIZE
Not implemented. Was in the original Resampling Stats because of limitations of its

memory model. This command is not needed in Statistics101.

MEAN

Command/Subroutine Descriptions

131

Computes the mean of a vector.

MEDIAN
Computes the median of a vector.

MIN
Finds the smallest (most negative) value in its input vector.

MINIMUMS
Copies minimum element of all input vectors into same position in result.

MODE
Finds the most frequently occurring value in its input vector.

MODE_CONTINUOUS
Computes mode of a continuous random variable.

MULTINOMIAL
Generates samples from a multinomial distribution defined by the cumDistrib vector.

MULTINOMIAL2
Generates samples from a multinomial distribution defined by the probabilities in the

probabilities vector.

MULTIPLES
Computes the number of “multiples” whose sizes satisfy the specified test.

MULTIPLY
Arithmetically multiplies corresponding elements of its input vectors.

NAME
Creates one or more Named Constants.

NEAREST_INDEX
Returns indexes in inVec of elements matching values in valVec or the largest element

less than val if there is no match.

NEWARRAY
Creates an array with the given name and dimensions.

NEWCMD
Declares a new user-defined command (subroutine) that can take a fixed or a variable

number of arguments.

NORMAL
Randomly selects a specified number of numbers from a specified normal distribution.

NORMALPROB
Calculates the cumulative normal distribution. Given x or z computes p.

NORMALPROBINV
Calculates the inverse cumulative normal distribution. Given p computes z or x.

Command/Subroutine Descriptions

132

NORMALQQGRAPH
Displays a Normal Test Plot (or 'Normal Quantile Plot') of a data vector.

NPV
Computes net present value. 'rate' is a decimal fraction, not a percent.

NUMBERS
Concatenates arguments into a single vector (Same as COPY).

OUTPUT
Writes a string and any number of optional numbers to the Output Window or to a

specified file.

PARETO
Randomly selects a specified number of numbers from the specified Pareto distribution.

PAUSE
Stops program execution until the user clicks on the Continue button.

PERCENTILE
Computes specified percentiles from an input vector.

PERMUTATIONS
Computes the number of permutations of n items taken k at a time.

POISSON
Randomly selects a specified number of numbers from a specified Poisson distribution.

POWER
Raises each element in the first input vector to the power of the corresponding element

in the second input vector.

PREDICT
Estimate a based on the independent variables and coefficients that have been

produced by the REGRESS command.

PRINT
Prints the name and contents of one or more vectors to the output window, one vector

to a line, or as a table, one vector to a column.

PRODUCT
Computes the product of all the elements of its input vector.

PROGINFO
Prints program variables, constants, and status information to the output window.

PUT
Inserts values from its input vector into its result vector at locations specified by its

positions vector.

RANDOM

Command/Subroutine Descriptions

133

Randomly selects a specified number of elements from a vector, with replacement.

(Same as GENERATE and SAMPLE.)

RANGE
Copies the minimum and maximum values from vec into min and max.

RANKS
Creates a list of the ranks of the elements of its input vector.

READ
Reads a file into one or more result variables (vectors).

RECODE
Replaces with a specified number, any element of the input vector that satisfies a

specified test.

REGRESS
Computes the coefficients of the linear regression equation determined by its dependent

vector and its independent vector(s).

REMAINDER
Divides the corresponding elements of the two input vectors and puts the remainder in

the result vector.

REMOVE
Copies all but the specified elements of its input dataVector into its result vector. See

also the TAKE command.

REPEAT
Executes commands between REPEAT and END a specified number of times.

RESHUFFLE
Reshuffles the global, shuffledUniverse, and resets the indexes. Used with the DRAW

subroutine.

RESHUFFLE2
Reshuffles the given universe and resets the indexes. Used with the DRAW2

subroutine.

REVERSE
Reverses the order of inVec's elements.

ROTATE
Rotates the elements of the input vector right or left by the specified number of places.

ROUND
Rounds each element of its input vector to the specified number of decimal places.

ROUNDALL
Applies the ROUND command to all argument vectors, in place.

RUNS

Command/Subroutine Descriptions

134

Computes the number of runs (consecutive equal numbers) whose lengths satisfy the

specified test.

SAMPLE
Randomly selects a specified number of elements from a vector, with replacement.

(Same as GENERATE and RANDOM.)

SCALARIZE
Computes a single number by concatenating all the elements of its input vector.

SCATTERGRAPH
Displays a linear or log scatter graph of its input vectors in a graphical tab in the

Stastistics101 Output window

SCORE
Accumulates the results of random trials in a scoring vector.

SCORECOORD
Applies SCORE command to multiple vector pairs.

SEARCH_BINARY
Returns indexes in inVec of elements matching values in valVec. Returns NaN for any

element that does not match.

SEARCH_BINARY_DESC
Returns indexes in inVec of elements matching values in valVec. Returns NaN for any

element that does not match.

SECH
Computes the hyperbolic secant of real x.

SEED
Sets the seed used by the random number generator and/or selects the algorithm that

generates the pseudo-random numbers.

SELECTCOORD
For all input vectors, copies elements at positions satisfying a test on the first input

vector into corresponding output vectors.

SELECTCOORD_BY_KEY
Chooses data items from a table's column vectors, corresponding to specified key

values.

SET
Creates a vector with a specified number of elements all of the same value as the input

number (Can be replaced by COPY N#val).

SHIFT

Command/Subroutine Descriptions

135

Shifts the elements of the input vector right or left by the specified number of places.

Shifts in fillNumber or zeros to the positions freed by the shift. The size of the result

vector will be the same as that of the input vector.

SHUFFLE
Randomly reorders the elements of a vector.

SHUFFLECOORD
Coordinated shuffle, in place, of two or more vectors.

SIGN
Substitutes “-1” for negative elements, “+1” for positive elements into the result vector.

By default, zero is considered positive. If keyword signum is present, zero is interpreted

as zero.

SIN
Computes the sine of each element of its input vector.

SINDEG
Computes the sine of each element, in degrees, of its input vector.

SINH
Computes the hyperbolic sine of real x.

SIZE
Counts the number of elements contained by the input vector.

SKEWNESS
Computes the skewness of data in the input vector.

SMA
Computes simple moving average of inVec over n elements.

SORT
Sorts the elements of the input vector in ascending or descending order.

SORTCOORD
Coordinated sort, in place, of two or more vectors

SORTCOORD_DESC
Descending coordinated sort, in place, of two or more vectors.

SQRT
Computes the square root of each element of the input vector.

SQUARE
Computes the square of each element of the input vector.

STRATASAMPLE
Performs stratified sample on given stratum vectors.

STDEV
Computes the standard deviation of a vector.

Command/Subroutine Descriptions

136

STRING
Concatenates string literals, string variables and/or vector variables into one string

variable.

STRING_COMPARE
Compares two strings, returning zero if they are equal, a negative number if the first is

less than the second, a positive number if the first is greater than the second.

STRING_REPLACE
Returns a new string resulting from replacing all occurrences (or the first) of a regular

expression match in the input string with a given replacement string.

SUBTRACT
Arithmetically subtracts corresponding elements of its input vectors.

SUM
Computes the sum of all the elements of its input vector.

SUMABSDEV
Computes the sum of the absolute differences between its two input vectors.

SUMSQRDEV
Computes the sum of the squared deviations of its first input vector's elements versus

its second vector's elements.

TAGS
Computes a list of the positions of the elements of the input vector that pass a test.

TAGSORT
Computes a vector whose element values, in order, are the positions of the elements of

its input vector as if the input vector were sorted in ascending or descending order.

TAKE
Copies specified elements from its input vector into its result vector. See also the

REMOVE command.

TAKECOORD
For any number of vector pairs, copies data by position set by tags from one vector of a

pair to the second of the pair.

TAN
Computes the tangent of each element of its input vector.

TANDEG
Computes the tangent of each element, in degrees, of its input vector.

TANH
Computes the hyperbolic tangent of real x.

TDIST

Command/Subroutine Descriptions

137

Returns a given number of random values from Student's t distribution with given

degreesOfFreedom.

TIME
Reads the system clock and puts the time, in milliseconds, into its result vector.

TIMEPLOT
Prints a timeplot of its input vector on the Statistics101 Output Window.

TOPOLAR
Converts a point described in rectangular coordinates to polar coordinates.

TODEG
Converts each element of its input vector from radians to degrees.

TORAD
Converts each element of its input vector from degrees to radians.

TORECT
Converts a point described in polar coordinates to rectangular coordinates.

TRIANGLE
Generates a given number of random numbers drawn from the Triangle distribution

whose minimum x value is minX, most likely value is modeX, and maximum value is

maxX.

TRIANGLEPROBDENSITY
Computes Y, the probability density at X, for a triangle distribution with minimum value

minX, most likely value modeX, and maximum value maxX.

TRIMMED_MEAN
Computes the trimmed mean of the input vector, given the percentage to be trimmed.

UNIFORM
Selects a specified number of values randomly from the uniform distribution with the

specified lower and upper limits.

UNTIL
Executes commands between UNTIL and END until the specified logical expression

evaluates to true.

URN
Concatenates arguments into a single vector (Same as COPY).

VARIANCE
Computes the variance of a vector.

WEED
Discards those values from its input vector that satisfy the specified test.

WEIBULL

Command/Subroutine Descriptions

138

Randomly selects a specified number of numbers from the specified Weibull
distribution.
WHILE
Executes commands between WHILE and END as long as the specified logical

expression evaluates to true.

WRITE
Writes its input vector(s) into a file or to the Statistics101 output window according to

optional format specifications.

XYGRAPH
Displays an X-Y linear or log graph of its input vectors in a graphical tab in the

Stastistics101 Output window

XYPLOT
Prints an X-Y linear or log plot of its input vectors to the Statistics101 Output Window.

Commands and Subroutines by Category

139

Appendix 3: Commands and Subroutines Listed by Category

In this table, the commands are shown in normal type and the subroutines are shown in Italic

type.

The command and subroutine names that are shaded may be used inside a LET command. Some

of the shaded commands, such as INTEGER and SORT, have options that are chosen using a

keyword. Since keywords are not allowed in the LET command, those options are given their

own special names to be used within LET as if they were ordinary commands. Those names are

INTEGER_CEILING, INTEGER_FLOOR, INTEGER_ROUND, INTEGER_TRUNCATE,

RANKS_DESCENDING, SIGN_SIGNUM, SORT_DESCENDING, STDEV_POP,

TAGSORT_DESCENDING, VARIANCE_POP. They are not listed in the following table

because they are not full-fledged commands and are only valid within the LET command. See

the entry for LET in the Statistics101 help document (menu item Help>Help) for full information

on each name.

The easiest way to find a command or subroutine when you don’t know its exact name or if it

even exists is to do a keyword search using the Command/Subroutine Index, which is available

from the Statistics101 program’s Help menu, Help>Command/Subroutine Index or by pressing

the F3 function key..

Bootstrap
BOOTSTRAPMEAN
BOOTSTRAPMEDIAN
BOOTSTRAPSTDEV
DOUBLE_BOOTSTRAP_MEAN_CI

Calculus
DERIVATIVE
INTEGRAL
INTEGRALDEF

Complex Math
COMPLEX
COMPLEX_ADD
COMPLEX_CONJUGATE
COMPLEX_COS
COMPLEX_COSH
COMPLEX_COT
COMPLEX_COTH
COMPLEX_CSC
COMPLEX_CSCH
COMPLEX_DIVIDE
COMPLEX_EXP
COMPLEX_GRAPH
COMPLEX_GRAPH_RADIAL
COMPLEX_IM
COMPLEX_MAGNITUDE
COMPLEX_MULTIPLY
COMPLEX_PRINT

COMPLEX_PRINT_POLAR
COMPLEX_PUT
COMPLEX_RE
COMPLEX_SEC
COMPLEX_SECH
COMPLEX_SIN
COMPLEX_SINH
COMPLEX_SPLIT
COMPLEX_SUBTRACT
COMPLEX_TAKE
COMPLEX_TAN
COMPLEX_TANH
COMPLEX_TOPOLAR
COMPLEX_TORECT
TOPOLAR
TORECT

Control Flow
BREAK
DEBUG
DEBUG_AT
ELSE
ELSEIF
END
EXIT
EXITQ
FOREACH
IF
PAUSE
REPEAT

Commands and Subroutines by Category

140

UNTIL
WHILE

Coordinated Operations
LOOKUP
SCORECOORD
SELECTCOORD
SELECTCOORD_BY_KEY
SHUFFLECOORD
SORTCOORD
SORTCOORD_DESC
TAKECOORD

Data Entry
1

CONCAT
CONST
COPY
DATA
ENUM
INPUT
NAME
NEWARRAY
NUMBERS
READ
SET
URN

Distributions
BETA
BETA_01
BINOMIALSAMPLE
BINOMIALTRIALS
CHISQUAREDIST
EXPONENTIAL
FDIST
GAMMADIST
LOGNORMAL
MAKECUMDIST
MULTINOMIAL
MULTINOMIAL2
NORMAL
PARETO
POISSON

1
CONCAT, COPY, DATA, NUMBERS, and URN

are really different names for the same command.

You can choose among these names depending on

context to make your program more clear. The SET

command can be replaced by a COPY command and

"multiple literals".

TDIST
TRIANGLE
TRIANGLEPROBDENSITY
UNIFORM
WEIBULL

Financial
FV
FV2
NPV
SMA

Input/Output
GETFILEPATH
INPUT
OUTPUT
PRINT
READ
WRITE

Math Functions
ABS
ACOS
ACOSDEG
ADD
ASIN
ASINDEG
ATAN
ATANDEG
COS
COSDEG
COSH
COTH
CSCH
DIVIDE
EXP
FACTORIAL
FRACTION
GAMMA
INCR
INTEGER
INTERPOLATE_LINEAR
IS_EVEN
LET
LOG
LOG10
MAX
MAXIMUMS
MIN
MINIMUMS

Commands and Subroutines by Category

141

MULTIPLY
POWER
PRODUCT
RANGE
REMAINDER
ROUND
ROUNDALL
SECH
SIGN
SIN
SINDEG
SINH
SMA
SQRT
SQUARE
SUBTRACT
SUM
SUMABSDEV
SUMSQRDEV
TAN
TANDEG
TANH
TODEG
TORAD

Matrix Math
CRAMERS_RULE
DETERMINANT
MATRIX_ADD
MATRIX_GETCOL
MATRIX_GETCOLS
MATRIX_GETELEMENT
MATRIX_GETROW
MATRIX_GETROWS
MATRIX_MAKE_BY_COL
MATRIX_MAKE_BY_ROW
MATRIX_MULTIPLY
MATRIX_PRINT
MATRIX_SUBMATRIX
MATRIX_TRANSPOSE
MATRIX_UNIT
MATRIX_INVERT

Plotting/Graphing
AUTOCORRGRAPH
BOXPLOT
BUBBLEGRAPH
COMPLEX_GRAPH
COMPLEX_GRAPH_RADIAL
HISTOGRAM

HISTOGRAMDATA
HISTOGRAMPLOT
LAGGRAPH
NORMALQQGRAPH
SCATTERGRAPH
TIMEPLOT
XYGRAPH
XYPLOT

Sampling/ Randomizing
2

CLUSTERSAMPLE
DRAW
DRAW2
EXTRACT
GENERATE
RANDOM
REMOVE
RESHUFFLE
RESHUFFLE2
SAMPLE
SHUFFLE
STRATASAMPLE
TAKE

Search
LOOKUP
NEAREST_INDEX
SEARCH_BINARY
SEARCH_BINARY_DESC

Series
FIBONACCI
IS_ASCENDING
IS_SEQUENCE

Sort
SORT
SORTCOORD
SORTCOORD_DESC
TAGSORT

Statistics Functions
AUTOCORR
BINOMIALPROB
CHISQUARE

2
GENERATE, RANDOM, and SAMPLE are really

different names for the same command. You can

choose among these names depending on context to

make your program more clear.

Commands and Subroutines by Category

142

CHISQUARE_TABLE
CHISQUARE_TRIALS
COMBINATIONS
CORR
CORR_SIGNIFICANCE
COUNT
COVARIANCE
GENERATE_COMBINATIONS
GENERATE_PERMUTATIONS
KURTOSIS
KURTOSIS0
MEAN
MEDIAN
MODE
MODE_CONTINUOUS
MULTIPLES
NORMALPROB
NORMALPROBINV
PERCENTILE
PERMUTATIONS
PREDICT
RANKS
REGRESS
RUNS
SKEWNESS
STDEV
TRIMMED_MEAN
VARIANCE

String Operations
STRING
STRING_COMPARE
STRING_REPLACE

Subroutines
ARGCOUNT
DECLARE
GETARG
NEWCMD

System
CLEAROUTPUT
CLOSETABS
DECLARE
EXEC
FUZZ
GLOBAL
INCLUDE
PROGINFO

SEED
TIME

Testing/Filtering
COUNT
MULTIPLES
RECODE
RUNS
TAGS
WEED
CHOOSETAGSTEST
CHOOSETEST

Trial Recording
SCORE

Vector Operations
CLEAN
CLEAR
DEDUP
DELTAS
EQUAL_ELEMENTS
IS_ASCENDING
IS_SEQUENCE
IS_SEQUENCE2
MAXIMUMS
MINIMUMS
PUT
RECODE
REMOVE
REVERSE
ROTATE
SCALARIZE
SEARCH_BINARY
SEARCH_BINARY_DESC
SHIFT
SIZE
SORT
TAGS
TAGSORT
TAKE
WEED

